a) $D=0.3 \mathrm{~m} \quad L=15 \mathrm{~m} \quad \nu=0.2 \quad G=0.6 \mathrm{z}$

$$
\begin{aligned}
& \frac{V}{\omega_{h} \cap G_{L}}=\frac{2}{1-\nu} \frac{\eta^{2}}{\xi}+\frac{2 \pi}{\zeta} \rho^{1} \frac{L^{1 / 2}}{D} \\
&=\frac{2}{0.8}+\frac{\pi}{4.38} \times \frac{15}{0.3}=38.36 \\
&0.85)=4.38 \\
& \omega_{h}=\frac{V}{D G_{L} \times 38.36 i}=\frac{500.000}{0.3 \times 0.6 \times 15 \times 10^{6} \times 38.36}=4.8 \mathrm{~mm}
\end{aligned}
$$

b) In an elastic soil, $\tau=G \gamma$
moving outward from pule, $\gamma=\frac{\partial \omega^{d}}{\partial r}$ equilibrium gives that $r \tau$ is constant.

$$
\begin{aligned}
\tau & \propto \frac{1}{r} \\
\gamma & \propto \frac{1}{r} \\
\omega & \propto \ln (r)
\end{aligned}
$$

At

$$
\begin{array}{ll}
r=0.15 \mathrm{~m} & \omega=0.4 .8 \mathrm{~mm} \\
r=12 \mathrm{~m} & \omega=0
\end{array}
$$

$$
\therefore \omega=-1.095 \ln \left(\frac{r}{12}\right)
$$

@

$$
\begin{array}{ll}
r=2 \mathrm{~m} & \omega=1.77 \mathrm{~m} \\
r=2 \sqrt{2} \mathrm{~m} & \omega=1.58 \mathrm{~m}
\end{array}
$$

C) Tolar load $=2 \mathrm{MN}$
load per pile $=500$ bN (as in b)
Each pile is influenced by the otter three as soil is dragged downwards

Toll settlement $=$ sum of pile-sail settlement + movencent of soil.

$$
\begin{aligned}
p & =4.8+2 \times 1.97+1.58 \\
& =10.32 \mathrm{~mm}
\end{aligned}
$$

d) If pule cap also carries load, loads carried by each pile will be reduced.

Could do a shallow foundation calculation to find stittiness of pile cap alone and then calculate load shares to equate settlements of piles and cap.

Additional complexity comes from extra dounwards movement of soil within influence zone of cap. which varios with depth making calculation by hand difficult. Could be dealt with by numerical method such as F.E.

Q1 Pile settlement
19 attempts, Average mark 14.33/20 (72\%), Maximum 19, Minimum 6.
Not a very popular question, but in general well answered by most students. Most students coped well with superposing settlement troughs of the four piles, but did not comment on the settlement trough for the raft in part (d).
a) Sand initially at K_{0} conditions As pile tip approaches, soil below pile tip is subjected to veiny large vertical stresses, inducing large horizontal stresses.
Soil is then heavily sheared and pushed outwards around pile tip inducing large horizontal stresses but reduced vertical shesses.
Cyclic movement of pile during driving causes fraction fatigue. Soil compresses due to cyclic shear, allowing horizontal stresses to reduce as soil moves away from pile tip.
Find hammer blow leaves behind locked-in soil stresses due to axial extension of pile after impact. Top part of pile carries dounward shear in unstressed state. API code deals with increased H shires due to soil being pushed outwards with K factor being higher for closed piles.
Friction fatigue deal will indirectly through limiting ts value which reduces predicted capacity of very long piles.

Contraction of loose sands is assumed to reduce fraction angle δ rather Man K. Erroneous but works as $(K \tan \delta)$ is essentially a single term in the design code.
$D=0.5 \quad t=50 \mathrm{~mm}$ medium dense sand

$$
V=2 \mathrm{MN}
$$

$$
\begin{aligned}
& \delta=25^{\circ} \quad \tau_{s, l_{\text {l }}}=85 \mathrm{kPa} \\
& N_{q}=20 \quad q_{b, L i m}=4.8 \mathrm{MPa} \\
& \sigma_{v_{0}}^{\prime}=9 z \\
& K=1 \\
& \tau_{s f}=9_{z} \times 1 \times \tan 25<85 \mathrm{kPa} \\
& 4.2 z<85
\end{aligned}
$$

Limit at $\sim 20 \mathrm{~m}$ depth

$$
\begin{gathered}
\tau_{b}=20 \times 9 z=180 \mathrm{z}<4800 \mathrm{kPs} \\
\text { limit al }-26.7 \mathrm{~m} \text { depth }
\end{gathered}
$$

If neither limit is reached:

$$
\begin{aligned}
V_{\text {ult }} & =(\pi \times \pi 0.5 L) \times 2.1 L \\
& +\left(\pi \times 0.25^{2}\right) \times 180 L \\
& =\pi\left[1.05 L^{2}+\right.\text { shaft } \\
3.30 L^{2} & +35.34 L-2000=0 \\
L & =-\frac{35.34+\sqrt{35.34^{2}+8000 \times 3.3}}{6.6} \\
= & 19.84 \mathrm{~m}
\end{aligned}
$$

limits ok!
c)

$$
\begin{aligned}
M_{p} & =\left(\frac{d_{0}^{3}-d_{i}^{3}}{6}\right) \sigma_{y} \\
& =\frac{0.5^{3}-0.4^{3}}{6} \times 300=3.05 \mathrm{MNm} \\
K_{p} & =\frac{1+\sin (35)}{1-\sin (35)}=3.65 \quad K_{p}^{2}=13.33 \\
n & =120 \quad \mathrm{kPa} / \mathrm{m}
\end{aligned}
$$

Short pile: $L=25 \quad D=0.5 \quad L / D=50$ extrapolating

$$
\frac{H_{u l t}}{n D^{3}} \sim 200
$$

Long pile: $\frac{M_{p}}{n D^{4}}=\frac{3050}{120 \times 0.5^{4}}=407$

$$
\begin{aligned}
& H_{\text {ult }} \ln D^{3} \approx 40<200 \text { so critical } \\
& \Rightarrow H_{\text {ult }}-40 \times 120 \times 0.5^{3}
\end{aligned}
$$

$$
=600 \mathrm{kN}
$$

Failure by bending of the pile (long failure mechanism)
d) Lateral loading mobilises most strength of surficial soil, whereas vertical loading uses deep soil strength. Little interaction between the two loading regimes so high proportions of both failure loads can be carried simultaneously.

29 attempts, Average mark 13.93/20 (70\%), Maximum 18, Minimum 6.
A very popular question, being answered by almost all students. The calculations in parts b \& c were well tackled with only minor arithmetic errors. The descriptive parts (a) and (d) were of variable quality with some very complete answers and some lacking the detail needed for the marks on offer. That said, even the shorter answers tended to be along the right lines.

NC Clay

$$
\begin{aligned}
& \delta_{r}=25 \mathrm{kPa} \\
& \gamma=17 \mathrm{kNIm}^{3} \\
& V=958 \mathrm{kN}
\end{aligned}
$$

(a) (1)Desigm affrach 1, Combination i

$$
Y_{F}=1.35
$$

$q_{\text {ovest }}=S_{c} d_{c} N_{c} S_{u}+\gamma^{h}$
$S_{C}=1+0.2 \mathrm{~B} / \mathrm{L}=1.2$ for square foundationi
$d_{c}=1.0$ for no embedment $(h \approx 0)$

$$
\begin{aligned}
& N_{C}=2+\pi=5.14 \\
& q_{\text {uet }}=(1.2)(1.0)(5.14)(25 \mathrm{kPa})=154.2 \mathrm{kPa} \\
& Y_{F} V \leqslant q_{\text {uet }} B^{2} \\
& B>\sqrt{\frac{\gamma_{F} V}{q_{\text {uet }}}}=\sqrt{\frac{(1.35)(958 \mathrm{kNV})}{(154.2 \mathrm{kPa})}}=2.9 \mathrm{~m}
\end{aligned}
$$

(2) Design affonch 1, combinathoni 2

$$
\begin{aligned}
& \gamma_{M}=1.4 \\
& \gamma_{a_{d}}=\frac{25 \mathrm{kPa}}{1.4}=17.9 \mathrm{k} R_{k}
\end{aligned}
$$

$$
\begin{aligned}
& q_{\text {Dall }}=S_{c} d_{c} N_{c} S_{u_{d}}+h \\
& q_{a l l}=(1.2)(1.0)(5.14)(17.9 \mathrm{kPa})=110.4 \mathrm{kPa} \\
& V \simeq q_{a l l} B^{2} \\
& B \geqslant \sqrt{\frac{V}{G_{\text {all }}}}=\sqrt{\frac{958 \mathrm{kN}}{110.4 \mathrm{kRa}}}=2.95 \mathrm{~m} \\
& \Rightarrow B \approx 3 \mathrm{~m}
\end{aligned}
$$

(b)

$$
3 m \quad \Delta \quad \Delta / 11 \mid 1 L=1,5 \mathrm{~m} \quad \Delta \sigma=4 \mathrm{Irq}
$$

Use Fadum's chart from databook

$$
q=\frac{V}{B^{2}}=\frac{958 \mathrm{kN}}{9 \mathrm{~m}^{2}}=106.4 \mathrm{kPa}
$$

QA $m=n=\frac{L}{z}=\frac{1.5 m}{2,5 m}=0.6$

$$
I_{r} \approx 0.14, \quad \Delta \sigma=(4)(0.14)(106 \mathrm{kPa})=59.4 \mathrm{kPa}
$$

(a) B $m=n=\frac{1.5 m}{7.5 m}=0.2$

$$
I_{r} \approx 0.023 \quad \Delta_{\sigma}=(4)(0.023)(106 \mathrm{kPa})-9.75 \mathrm{kPa}
$$

(2) $m=n=\frac{1.5 m}{12.5 m}=0.12$

$$
I_{r} \approx 0.01 \quad \Delta \sigma=(4)(0.01)(106 \mathrm{kPa})=4.24 \mathrm{kPa}
$$

(c) $\quad w=56 \% \quad e_{0}=(2.7)(0.56)=1.512$
$\rho=\frac{\Delta e}{1+e_{0}} H_{0}=\frac{H_{0} \lambda}{1+e_{0}} \ln \left(\frac{\sigma_{j}^{j}}{\sigma_{0}^{j}}\right) \quad$ The clay is $N C$.

$$
p_{r o r}=109.3 \mathrm{~cm}
$$

The predichuot of cousolidatuoi settlements sous be improved by:

- detaining properties (writer warrant and λ) at more Locations
- Subdivide the clay leaper nato mare sub. Layers, especiotty the top where the variation in stress in changing more rapidly.

Most of the stress increase will be concentrated in the top half of the clary
 Sayer.
(d) One of the main vizues with shallow footings $9 / 14$ is the larger potential for differential settlements. Shallow footing's tend to result in larger settlements than deep foundation's because the niscrecure in stress due to the surface raced wan be large.

The footing for the is building need to haver a sire of 3 品 $\times 3 \mathrm{~m}$. The cosmic sparing in 7 m oc., cohick means that footings writs cover almost ate the footprint of the busildering - In arditiosec, the loun-terve canveliciaction sethement is estimate ed (roughly) to be over 1 m , whelk in thing lay ge. The protenticil for Large differential settlements leading to unacceptable distortaonio ane very high.

Thuefore, shallow footings are not an acceptable foundation' mystem for the's building ni the s configuration'
Polections inefrovencevis, be fore coursidening deep foundations, may be:

- a raft foundation' Here contact pressure would decrease, leading to smaller consolidation seftenents. The raft also needs to be sufficisenting Still to prevent differential sebticurents. Cost may be similar to Heat of deep foundations
- Fucreasing embedment will unease capacity
but it will also lead to lugher coutact thessevere $10 / 1 \mathrm{k}$ oud, trerefore, recthenents -

Q3 Square footing design

25 attempts, Average mark 13.12/20 (65.6\%), Maximum 16.5, Minimum 6.5.
This was a popular question. Only 3 students recognised that the design factors should be applied either to load or strength properties, not to both. Most students were able to use Fadum's chart correctly to estimate load increase in the soil, but a number of them used the factored load, instead of the unfactored one. About half of the students could not calculate consolidation settlements correctly.

- PROBLEM 4

$$
\left[\begin{array}{ll}
1.5 \mathrm{~m} & \operatorname{Cand} \\
\underline{\eta} & \phi^{\prime}=32^{\circ} \\
\gamma_{\text {sat }}= & \\
& G_{5}=20 \mathrm{kN} / \mathrm{ma}^{3}
\end{array} \quad \gamma d=16.4 \mathrm{kN} / \mathrm{m}^{3}\right.
$$

(a)

$$
\begin{aligned}
& V=820 \mathrm{kN} \\
& h=1 \mathrm{~m}
\end{aligned}
$$

Design approach 1, combination 1:

$$
\begin{aligned}
& \gamma_{F}=1.35 \\
& q_{u l t}=s_{q} N_{q} \sigma_{v o}+s_{\gamma} N_{\gamma} \frac{\gamma_{B}^{\prime}}{2} \\
& N_{q}=\tan ^{2}\left(\frac{\pi}{4}+\frac{\phi}{2}\right) e^{\pi \tan \phi}=(3.25)(7.12) \\
& s_{q}=1+\frac{B \sin \phi}{L}=1+\sin \phi=1.53 \\
& \sigma_{v_{0}}^{\prime}=\gamma_{d} h=\left(16.4 \mathrm{kN} / \mathrm{m}^{3}\right)(1 \mathrm{~m})=16.4 \mathrm{kPa} \\
& N_{\gamma}=2\left(N_{q} .1\right) \tan \phi=(2)(23.1-1) \tan 32^{\circ}=27.6 \\
& s_{\gamma}=1-0.3 \mathrm{~B} / \mathrm{L}=0.7
\end{aligned}
$$

Since the water table is below the foundation, but still withing the zone that is affected by the failure mechanism we should consider which γ should be used is the bearing capacity equation. Ideally, we could calculate an effective value taking into account what portion's of the
failure mechanism lie below the wale table. However, using γ^{\prime} is conservative for bearing capacity calculation' It is also safer if the water table were to rise.

Assume $B \rightarrow$ calculate $q_{\text {net }} \rightarrow$ compare with $Y_{F_{F} V}=q$

$$
\begin{aligned}
& q_{\text {but }}=(1.53)(23.1)(10 \mathrm{kPa})+\frac{(0.7)(27.6)\left(10 \mathrm{kN} / \mathrm{m}^{3}\right)(2 \mathrm{~m})}{2}= \\
& =353+96.6 B=353+193=546 \mathrm{kPa} \\
& q=\frac{\gamma_{F} V}{\left(\frac{\pi B^{2}}{4}\right)} \leqslant q_{\text {set }}
\end{aligned}
$$

$B=1.70 \mathrm{~m}$
Anything more refined would be diffiwet to construct. In fact, the more realistic specification would be

$$
B=1.7 \mathrm{~m}
$$

(b)

$$
\begin{aligned}
& V=820 \mathrm{kN} \\
& M_{x}=123 \mathrm{kN} \\
& M_{y}=574 \mathrm{kN}
\end{aligned}
$$

Use Meyerhof's affroach and find effective foundation sizes :

$$
\begin{aligned}
& e_{x}=\frac{M_{x}}{V}=\frac{123}{820}=0.15 \mathrm{~m} \\
& e_{y}=\frac{M_{4}}{V}=\frac{574}{820}=0.7 \mathrm{~m}
\end{aligned}
$$

$$
q_{\text {vet }}=s q N_{q} \sigma_{v o}^{\prime}+s_{\gamma} N_{\gamma} \frac{\gamma^{\prime} B}{2}
$$

Coubination 1

$$
\begin{aligned}
& \gamma_{F}=1.35 \\
& N_{q}=23.1 \\
& N_{\gamma}=27.6 \\
& s_{q}=1+\frac{1.6}{1.7} \sin 32^{\circ}=1.5 \\
& s_{\gamma}=0.72
\end{aligned}
$$

$q_{\text {uet }}=(1.5)(23.1)(10)+\frac{(0.72)(27.6)}{2}(10)(1.6)=$

$$
=346+159=505 \mathrm{kPa}
$$

Combinatrou 2

$$
\frac{\gamma_{F} V}{B^{\prime} L^{\prime}} \leq q_{\text {uet }}
$$

$$
\frac{(1.35)(820 \times \mathrm{K})}{(1.6 \mathrm{~m})(1.7 \mathrm{~m})}=407 \mathrm{kPa}<693 \mathrm{kPa}
$$

$$
\begin{aligned}
& \gamma_{M}=1.25 \\
& \phi_{d}^{\prime}=\tan ^{-1}\left(\frac{\tan \phi^{\prime}}{\gamma_{M}}\right)=26^{\circ} \\
& N_{q}=\tan ^{2}\left(\frac{\pi}{4}+\frac{\phi_{d}^{\prime}}{2}\right) e^{\pi \tan \phi_{d}^{\prime}} \\
&=(2.56)(4.63)=11.8 \\
&(10)(1.6)=\quad S_{q}=1+\frac{1.6}{1.7} \sin 26=1.41 \\
& \sigma_{v_{0}}^{\prime}=16.4 \mathrm{kPa} \\
& N_{\gamma}=2\left(N_{q}-1\right) \tan \phi_{d}^{\prime}=10.5 \\
& 5 \%=1-(0.3)\left(\frac{1.6}{1.7}\right)=0.72 \\
& 693 \mathrm{kPa} \quad q_{\text {all }}=(1.41)(11.8)(10 \mathrm{kP})+\frac{(0.72)(10.5)\left(10 \mathrm{NN} \mathrm{~V}_{\mathrm{m}}{ }^{2}\right)(1 . t}{2} \\
& V_{\text {OK }} \quad
\end{aligned}
$$

$$
\begin{aligned}
& \frac{V}{B^{\prime} L^{\prime}} \leq q_{a l l} \\
& \frac{(820 \mathrm{kPa})}{(1.6 \mathrm{~m})(1.7 \mathrm{~m})}=301 \mathrm{kP}>226 \mathrm{kPa} \\
& \times \text { NO! }
\end{aligned}
$$

(c)

$$
\begin{aligned}
& D=1.5 \mathrm{~m} \\
& q=\frac{820 \mathrm{kPa}}{\frac{\pi(1.5 \mathrm{~m})^{2}}{4}}=463 \mathrm{kPa}
\end{aligned}
$$

Assumption: the footing in acting as a rigid punch

$$
w=\frac{\pi(1-\nu)}{4 G} q_{\text {avg }} \frac{R}{2}=\frac{\pi(1-0.3)}{4(20 \mathrm{MPa})}(463 \mathrm{kPa})\left(\frac{1.5 \mathrm{~m}}{2}\right)=9.5 \mathrm{~mm}
$$

The settlement is low and the potential for eccemive differential settlement is equally low \rightarrow

No concern for serviceability limit state -
(d) If the footing is also subjected to horizontal bods the full V-H-M soluteai should be used. In general a combination of loads will result in capacities that are lower for each term than the netinate value for each load case take independently

Q4 M-V loading on shallow foundation

18 attempts, Average mark 11.83/20 (59.17\%), Maximum 17, Minimum 6.
As in problem 3, students applied both design factors at once. A few applied one of the factors, and chose either to decrease strength or increase load, but only one checked both cases. Students seemed confused by the fact that the proposed sizing was not adequate. Most students correctly identified the procedure to handle M-V loading.

