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1. Hidden Markov Models for Speech Recognition

(a) The generic speech recogniser is
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SECTION B QUESTION 3

(a) The generic recognition architecture of an ASR system is
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The primary models are the acoustic model and the language model.
The language model assigns likelihood P (W ) to sentence hypotheses W
constructed from words in the vocabulary. For a given sentence hypothesis,
the acoustic model assigns likelihood P (O|W ) to the acoustic observation
sequence, which is produced by the front-end. The observation sequence is
typically a time-synchronous transformation of the speech waveform into a
vector series of acoustic measurements, such as the cepstrum. The search
process attempts to find the sentence most likely to have generated the
observed acoustic sequence. Adaptation can be performed to tune the
parameters of both the acoustic and language models to the speaker and/or
tasks at hand.

(b) The recognition attempts to produce the most likely sentence hypothesis given
the acoustic data

Ŵ = argmaxW P (W |O)

which is equivalent to

Ŵ = argmaxW P (O|W )︸ ︷︷ ︸
Acoustic
Model

P (W )︸ ︷︷ ︸
Language

Model

The argmax operation is carried out by the search component.

(c) For an N-state HMM with an hidden state sequence X, observation
distribution b(·), transition matrix [ai,j], and emitting states 2 through N − 1,
the Forward Backward algorithm computes the quantities

αj(t) = P (O1, . . . , Ot, X(t) = j)

βj(t) = P (Ot+1, . . . , OT |X(t) = j)
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The primary models are the acoustic model and the language model. The language
model assigns a probability P (W ) to sentence hypotheses W constructed from words
in the vocabulary (which also defines the pronunciation in terms of the acoustic model
units). The acoustic model assigns likelihood p(O|W ) to the acoustic observation
sequence which is produced by the front-end (e.g. MFCCs). The search process finds
the modt likely string. Adaptation, if used can be performed to tune the parameters
of the acoustic and language models. [25%]

(b)(i) The forward probability is defined as

↵j(t) = p(o1, . . . ,ot, x(t) = j|�)

where x(t) denotes the state occupied at time t, and � represents the HMM parameter
set.

The backward probability, �j(t), is defined as

�j(t) = p(ot+1, . . . ,oT |x(t) = j,�)

↵j(t) can be computed e�ciently

�j(t) =
NX

i=1

↵i(t� 1)aijbj(ot)

where ↵i(0) = 1 for i = 1 and zero otherwise. Recursion moves forwards in time.

�j(t) can be computed e�ciently

�j(t) =
NX

i=1

ajibi(ot+1)�i(t + 1)
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The primary models are the acoustic model and the language model. The language
model assigns a probability P (W ) to sentence hypotheses W constructed from words
in the vocabulary (which also defines the pronunciation in terms of the acoustic model
units). The acoustic model assigns likelihood p(O|W ) to the acoustic observation
sequence which is produced by the front-end (e.g. MFCCs). The search process finds
the most likely string. Adaptation, if used can be performed to tune the parameters
of the acoustic and language models. [15%]

(b) HMM assumptions:

• The observations accurately represent the signal. Speech is assumed to be sta-
tionary over the length of the frame. Frames are usually around 25msecs, so for
many speech sounds this is not a bad assumption.

• Observations are independent given the state that generated it. Previous and
following observations do not affect the likelihood. This is not true for speech,
speech has a high degree of continuity.

• Between state transition probabilities are constant. The probability of from one
state to another is independent of the observations and previously visited states.
This is not a good model for speech.

[10%]

(c)(i) The forward probability is defined as

αj(t) = p(o1, . . . ,ot, x(t) = j|λ)
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where x(t) denotes the state occupied at time t, and λ represents the HMM parameter
set.

The backward probability, βj(t), is defined as

βj(t) = p(ot+1, . . . ,oT |x(t) = j, λ)

αj(t) can be computed efficiently

αj(t) =
N∑

i=1

αi(t− 1)aijbj(ot)

where αi(0) = 1 for i = 1 and zero otherwise. Recursion moves forwards in time.

βj(t) can be computed efficiently

βj(t) =
N∑

i=1

ajibi(ot+1)βi(t+ 1)

where βj(T + 1) = ajN . Recursion moves backward in time. Note p(O = β1(0). [25%]

(c)(ii)

αj(t)βj(t) = p(o1 . . .ot, x(t) = j |λ)p(ot+1 . . .oT |x(t) = j, λ)

= p(O, x(t) = j |M)

= p(O |λ)P (x(t) = j |), λ)

= p(O |λ)Lj(t)

Hence,

Lj(t) =
1

p(O |λ)
αj(t)βj(t)

(d) A composite HMM is constructed for each sentence in the training corpus accord-
ing to the word level transcription (allowing for optional silences), and the pronun-
ciation dictionary. If there isn’t a single pronunciation per word then the composite
HMM has branches and either the Viterbi algorithm can be used to select pronunci-
ation variants (given some initial models) or run forward-backward on the network.
Note that this is also an issue for optional inter-word silences. Then the forward-
backward algorithm is run on the complete sentence-level composite HMMs and
suitable statistics for HMM training found. The HMMs can be initialised typically
either by a flat start (all parameters equal, just define left-to-right topology) or by
using some estimates of HMM parameters from a phone-level labelled set of data. [20%]

(e)(i)/(ii) Forward probability pruning. Calculate the maximum value of logαj(t) at
each time and only consider models which have a maximum value logαj(t) above a
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threshold. The same method can be applied on the backwards pass to the log βj(t)
values. The state posterior is found from αj(t)βj(t) and a threshold applied to this
from the maximum value gives a very tight beamwidth. In practice the αj(t) pruning
results in a beam a few words wide and the posterior pruning is then one or two phones
wide. Note that this is very important for long utterances since only a few percent
of the models can be active and greatly speeds training. [20%]

2. Large vocabulary recognition

(a) MFCCs - take cosine transform of log filterbank energies (assuming that the
filterbank is on a mel scale). Might take a vector of 24 energies and compute 12
MFCCs. If P channels and mj is the energy of the jth channel then the MFCC
component

cn =

√
2

P

P∑

i=1

mi cos

[
n(i− 1

2
)π

P

]

This will reduce computation (smaller feature vectors) and storage. It will also
increase accuracy as diagonal covariance matrices are a better approximation. [15%]

(b) It is proposed to add MFCC time differentials to the feature vector. Normally
these are smoothed over several frames. They take account of the first-order local
dynamics to account (in part) for the poor HMM assumptions. The change will
increase accuracy but make the feature vector two or three times as large and will
increase computation (unless pruning is more effective due to increase in accuracy). [15%]

(c) The state distribution is not completely uncorrelated and may be non-Gaussian.
Better to use a Gaussian mixture with

bj(o) =
M∑

m=1

cjmbjm(o) =
M∑

m=1

cjmN (o;µjm,Σjm)

cjm is the component weight, or prior. For this to be a pdf it is necessary that

M∑

m=1

cjm = 1 and cjm ≥ 0

This increases computation and storage roughly proportional to the number of com-
ponents but also reduces word error rate (if there is enough training data). [20%]

(d) Cross-word triphones. Convert each monophone to a cross-word context-dependent
phone model (model depends on the immediate left and right phone context as well
as the phone itself and the context extends across word boundaries). It allows co-
articulation to be explicitly modelled. This complicates training as the number of
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models is greatly increased and some type of smoothing or parameter sharing is re-
quired. Here it is suggested that state-tying via phonetic decision trees are used.
These group contexts into equivalence classes so that models can be robustly esti-
mated for the grouped contexts and importantly triphones unseen in the training
data can also be dealt with. The phonetic decision tree is grown automatically from
training in a top-down fashion with questions chosen so as to maximise an approxi-
mate likelihood of the training data based on single Gaussian statistics using a greedy
node splitting criterion. The questions for splitting contexts are chosen from a pool
of linguistic questions which yield generalisation ability. Normally a threshold on the
number of frames associated with each leaf node is also set.

For cross-word triphones (from monophones) decoding is greatly complicated and
computational cost increases (and storage since there will usually be far more pa-
rameters even with tying). It can have a large decrease in word error rate (factor of
two or more). [25%]

(e) Use of a trigram language model. This uses a 2 word history to predict the next
word (the prior probability in recognition). Typically trigram language models use
back-off or interpolation for robust estimation. Furthermore they will be reduced in
size to avoid having to store too many trigrams. During recognition the two-word
(rather than single word) context needs to be made explicit in the network. There
are a number of ways that this can be approached to efficiently decode. First is to
generate word lattices with a bigram model and then rescore these with a trigram
model. This only requires expansion of the network structure that is present in the
lattice and is hence much more efficient. The second is to use a Weighted Finite State
transducer model to optimise the overall structure which can greatly compress the
structure. In either case (or a combination) the memory use for the language model
goes up significantly but pruning is more effective and the run-time may be similar.
However the word error rate is often significantly reduced. [25%]
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3. Text-to-speech

(a) The input text can come from arbitrary sources and must be normalised prior
to synthesis. The text must be transformed into a high level description of speech
sounds that can be used to synthesis signals. The output of the analysis stage is a
sequence of phonetic symbols accompanied by intonation information. The output
of the second stage is the synthesized speech signal. [10%]

(b)(i) Linguistic analysis stages block diagram (drawn from Lecture 14): [15%]

(b)(ii) The text preprocessing stage is needed for text normalisation; the morphologi-
cal analysis prepares for pronunciation and for syntactic analysis; syntactic analysis is
done to aid part-of-speech tagging, to help determine pronunciation of homographs;
pronunciation generation produces pronunciation for words in isolation. The syntac-
tic analysis and pronunciation is used to generate intonation patterns (energy, F0,
duration). The final stage accounts for cross-word articulatory effects. [15%]

(c) A synthesis unit is the basic entity for which parameters are stored in the speech
synthesis stage. Longer units lead to few artefacts due to concatenation effects, but
can be difficult to generalise; shorter units can generalise better, but care must be
taken in synthesizing larger units from smaller units, due to the artefacts mentioned
above. [15%]

(d) The question asks for two ways in which ASR and TTS differ in their use of
HMMs. Some possible reasons include the following: [20%]

• For an acoustic sequence OT
1 , in ASR we find the most likely sequence as

argmax
W

P (W |OT
1 ) = argmax

W
PHMM(OT

1 |W ) PLM(W )

whereas in TTS, for a word sequence W , we find the most likely acoustic

sequence ÔT
1 as

argmax
OT

1

P (OT
1 |W ) = argmax

OT
1

PHMM(OT
1 |W )
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note that there is no language model, and that the HMM is used directly as a
generative model.

• In HMM-based TTS, the state sequence Q through the composite HMM is
defined similarly as in ASR. However, state durations are determined by models
for phone/state duration:

P (Q|λ) =
N∏

i=1

pi(di)

• HMMs used in TTS tend not to have mixture components, i.e. the state obser-
vation distribution is a single Gaussian

• F0 is modelled as a separate stream in TTS; in ASR, it is often ignored

• state clustering questions used in TTS can address much longer context, e.g. at
the sentence, phrase, syllable or even corpus level.

• In ASR, the cepstral sequence and its delta coefficients are often treated as con-
ditionally independent given the state sequence, whereas they are often modelled
jointly in TTS (see next question)

(e) Cepstral sequences are generated given the HMM state sequence Q̂ as

argmax
OT

1

P (OT
1 |W ) = argmax

OT
1

PHMM(OT
1 |W )

Recall that PHMM(OT
1 |QT

! ) =
∏T

t=1 P (Ot|Qt), it becomes clear that the sequence is
generated as argmaxOt

P (Ot|Qt), which will be piece-wise constant, changing only
if Qt 6= Qt+1. For single Gaussian observaiton distributions, the output is simply a
sequence of the mean-value vectors of the Gaussians associated with each state.

If a matrix W is used to enforce the relationship OT
1 = WcT1 , which ct is a cepstral

feature vector, and Ot is the feature vector at time t containing the dynamic features,

then the observation sequence can be produced as OT
1 = WĉT1 where

ĉT1 = argmax
cT1

P (WcT1 |QT
1 )

This will produce a smoother cepstral sequence, as the differentials must also have
high likelihood under the HMM. [20%]

(f) In ASR, the search algorithm must apply the HMM clustering questions during
search as the word hypotheses are constructed. This can be done efficiently with e.g.
triphones, but cannot be easily extended to e.g. phrase or sentence level features. In
TTS, the model is conditioned on a single given word sequence, and so HMM state
clustering can make use of much broader context. [10%]
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4. Machine Translation

(a) A Semiring is defined by a sum ⊕ operation, a product ⊗ operation, and two
identity elements 0̄ and 1̄ such that:
- for a weight k ∈ K : 0̄⊕ k = k; 1̄⊗ k = k; 0̄⊗ k = 0̄
- ⊕ and ⊗ distribute and commute in the familiar way. [10%]

(b) The completed version of Table 1 is as follows:

Semiring K ⊕ ⊗ 0̄ 1̄

Probability R+ + × 0 1
Log R ∪ {−∞,∞} ⊕log + ∞ 0

Tropical R ∪ {−∞,∞} min + ∞ 0

⊕log : k1 ⊕log k2 = − log(e−k1 + e−k2)
[20%]

(c) To convert the WFSA, it is enough to replace each arc weight in the probability
semiring, which take values in [0, 1], by its negative log (− log). These weights are
appropriate for both the Log and Tropical semiring.

The shortest path operation should yield the same result under the Probability and
the Log semirings. This cost assigned to a string is accumulated over all paths that
might accept the string. Under the tropical semiring, the shortest path can yield a
different result, corresponding to the cost of the best single path accepting a string.
This corresponds to the difference between the marginal probability and the Viterbi
score, which agree if the accepting path is unique. [20%]

(d) (i)/(ii) A sketch of the RTN and the conversion to WFSA are given below.

7



[20% for
each part](e) Advantages of using translation grammars are:

• Syntax can capture some regular structure in translation between languages,
e.g. ne X1 pa → not X1, and le X2 X1 → X1 of the X2.

• The use of non-terminals allows control over very long-distance movement of
words and phrases.

[10%]
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4F11 Assessor’s comments 
 
Q1: Hidden Markov Models  
The question covered the basics of the use of hidden Markov models (HMMs) in speech 
recognition, including maximum likelihood training. The final parts discussed (i) the use of 
sub-word HMMs on a corpus labelled at the word level and (ii) possible efficiency 
improvements using pruning (not covered in lectures). 
 
Q2: Large Vocabulary Speech Recognition  
This question covered the use of mel frequency cepstra and differentials, Gaussian mixture 
distributions, cross-word triphones with decision tree state tying and trigram language 
models. This question was attempted by all candidates with some very good answers.  
 
Q3 Speech Synthesis  
A rather unpopular question. This question covered the architecture of text-to-speech 
synthesis systems, linguistic analysis and the use of hidden Markov models (HMMs) in 
speech synthesis. The material on HMM synthesis was taught for the first time this year and 
this probably explains 
why there were few attempts. 
 
Q4 Weighted Finite State Acceptors  
This question covered semirings, and the use of translation grammars. 


