
Engineering Tripos Part IIB FOURTH YEAR

Module 4F14: Computer Systems

Solutions to 2019 Tripos Paper

1. Datapaths and pipelining
(a) A pipelined datapath features extra registers between the principal datapath stages. In
each clock cycle, instructions advance through just one stage of the datapath, writing their
interim results into the pipeline registers. In this way, several instructions can be in the
pipeline at the same time, one at each stage. Pipelining therefore increases instruction
throughput.

The term hazard is used to describe dependencies between instructions which disrupt the
operation of a pipelined datapath. Data hazards occur when an instruction requires data
before a previous instruction has written it to the register file. Branch hazards occur when
the address of the next instruction is required (for instruction fetching) before an earlier
conditional branch instruction has been evaluated. [20%]

(b) (i) Without data forwarding, there are read-after-write hazards between every adjacent
pair of instructions apart from the sw/addi, each requiring three stalls. We also need to
flush three instructions after the bne, apart from on the last iteration when the branch is
not taken. Allowing for the initial add instruction (followed by three stalls) and also four
cycles at the end for the pipeline to clear, the code requires 4+17(n−1)+14+4 = 17n+5
cycles. [10%]

(ii) Forwarding cannot completely resolve the data hazard between the lw and the add, so
there will have to be one stall here. The code now requires 1 + 9(n− 1) + 6+ 4 = 9n+ 2
cycles. [10%]

(iii) We can avoid the stall between the lw and the add by unrolling the loop. This also
reduces the number of branch flushes.

add $9,$0,$0 # clear $9 to zero

Loop: lw $8,Astart($9) # $8 loaded with data at address $9+Astart

lw $12,Astart+4($9) # $12 loaded with data at address $9+Astart+4

lw $13,Astart+8($9) # $13 loaded with data at address $9+Astart+8

lw $14,Astart+12($9) # $14 loaded with data at address $9+Astart+12

add $8,$8,$10 # $8 loaded with $8+$10

add $12,$12,$10 # $12 loaded with $12+$10

add $13,$13,$10 # $13 loaded with $13+$10

add $14,$14,$10 # $14 loaded with $14+$10

sw $8,Astart($9) # $8 stored at address $9+Astart

sw $12,Astart+4($9) # $12 stored at address $9+Astart+4

sw $13,Astart+8($9) # $13 stored at address $9+Astart+8

sw $14,Astart+12($9) # $14 stored at address $9+Astart+12

addi $9,$9,16 # $9 loaded with $9+16

bne $9,$11,Loop # jump back 13 instructions if $96=$11

This code requires 1 + 17(n/4− 1) + 14 + 4 = 17n/4 + 2 cycles. [20%]

(iv) The instructions can be scheduled on the 2-way superscalar pipeline, with just one
load/store at a time, as follows. Note how $9 is incremented by 16 at the start of the loop,
so all the address offsets (apart from the first one) need decrementing by 16.

add $9,$0,$0

Loop: lw $8,Astart($9) addi $9,$9,16

lw $12,Astart-12($9)

lw $13,Astart-8($9) add $8,$8,$10

lw $14,Astart-4($9) add $12,$12,$10

sw $8,Astart-16($9) add $13,$13,$10

sw $12,Astart-12($9) add $14,$14,$10

sw $13,Astart-8($9)

sw $14,Astart-4($9) bne $9,$11,Loop

This code requires 1 + 11(n/4− 1) + 8 + 4 = 11n/4 + 2 cycles. [20%]

(c) The actual number of clock cycles might be higher because of instruction and data
cache misses, requiring further pipeline stalls. Loop unrolling will most likely increase
the number of instruction cache misses: even if the unrolled loop remains intact in the
instruction cache, there are more instructions to fetch and therefore more misses during
the first iteration. [20%]

Assessors’ remarks: This question tested candidates’ understanding of pipelined datap-
aths and hazards. It was well answered, with candidates demonstrating a sound grasp of
the important principles. Weaknesses were generally restricted to the details (calculating,
accurately, execution clock cycles) rather than substance, though nobody appreciated the
potential impact of loop unrolling on instruction cache misses.

2. Caches and locality of reference
(a) Cache access is faster than main memory access because of its physical proximity to
the CPU and its construction out of static RAM, as opposed to slower dynamic RAM.
Data still needs to be fetched from main memory to the cache, but this overhead is easily
amortized through temporal locality of reference (so a fetched item is likely to be accessed
again soon, and this time it will be in the cache) and spatial locality of reference (so a
fetched item’s neighbours are likely to be accessed soon, so fetch blocks of data at a time,
paying the main memory latency price just once). [10%]

(b) Direct mapped caches have the lower hit time, since the index points to a unique block
and no searching of the cache is required. However, since there is no choice of which

block to replace on a miss, we might replace blocks that are going to be referenced again
soon: this will lead to a high miss rate. In a set-associative cache, the index points to a
(typically small) set of blocks that must be searched, increasing the hit time. But there is
some flexibility as to which block to replace on a miss. We could, for example, consider
temporal locality of reference and replace the least recently used (LRU) block, thereby
reducing the miss rate. [15%]

(c)

m
is

s
 p

e
n

a
lt
y

m
is

s
 r

a
te

block size block size

Spatial locality of reference means that the miss rate generally decreases with block size,
though with very large blocks the miss rate may eventually increase (too many cache con-
flicts). The miss penalty increases with block size, since more words need to be transferred
from main memory.

m
is

s
 p

e
n
a
lt
y

m
is

s
 r

a
te

associativityassociativity

LRU

random

The miss rate decreases with increased associativity, since block replacement strategies
like LRU can be used to replace blocks which are unlikely to be needed again soon. With
LRU, the miss penalty may increase with more associativity, since the LRU algorithm
needs to check more access times to decide which block to replace. For random replace-
ment, the miss penalty is likely to be independent of associativity. [25%]

(d) (i) The data cache can store 1024/4 = 256 ints. Since the matrix elements are all ints
it follows that the cache can store 256 matrix elements at a time. [5%]

(ii) The code segment in Fig. 2 has very poor temporal locality of reference. Even though
the elements of b and c are each referenced 1000 times, successive references to the same

element are not close together. The inner loop in k references 1000 distinct elements
of b and 1000 distinct elements of c before there are any repeat references. These 2000
references will fill and refill the LRU data cache approximately 8 times over, with no cache
hits. It follows that every reference to a matrix element in Fig. 2 will miss, apart from the
repeat references to a[i][j]. Since there are 109 references to elements of b and c, and
106 references to unique elements of a, there will be approximately 2× 109 cache misses. [20%]

(iii) The code segment in Fig. 3 has much better temporal locality of reference. The inner
loops in j and k reference 100 elements of c and 10 elements each of a and b. All these
elements will comfortably fit in the data cache. The next iteration of the i loop references
the same 100 elements of c and 10 new elements each of a and b. Since the 100 elements
of c are already in the cache, and they are all used each time round the i loop, there will be
no further cache misses for c until the next iteration of the kk loop. So, for the inner three
loops (in i, j and k) there will be a total of 100 + 2 × 10 × 1000 = 20100 cache misses.
The three inner loops are enclosed in two nested loops in kk and jj, each of which iterates
100 times. So the total number of data cache misses will be 100× 100× 20100 ≈ 2× 108,
an improvement by a factor of 10 over the code in Fig. 2. [25%]

Assessors’ remarks: This question tested candidates’ understanding of caches and lo-
cality of reference. Candidates demonstrated an excellent level of understanding of the
essential principles in parts (a)–(c). Analysis of the two matrix multiplication algorithms
in (d) was somewhat variable. Even though most identified and evidently understood the
superior locality of reference afforded by blocking, not many produced accurate estimates
of the numbers of cache misses.

3. Adders
(a) Amdahl’s Law says that it is of paramount importance to optimise the speed of those
components that are most frequently used in a computer system (“make the common case
fast”). For most instruction set architectures, ALUs are used at least once in the execution
of just about every instruction. Faster ALUs would therefore have a significant impact on
the speed of the overall system. [10%]

(b) Carry lookahead can be used to determine the carry inputs to each full adder without
using ripple carry. For each bit i of the adder, we define two signals, generate gi and
propagate pi. Bit i generates a carry if the two bits it is adding are both 1, and propagates
a carry if either of the two bits it is adding is 1:

gi = ai.bi pi = ai + bi

c1, the carry into bit 1, will be 1 if either bit 0 generates a carry or c0 is 1 and bit 0
propagates a carry:

c1 = g0 + p0.c0

Likewise for c2, c3 and c4:

c2 = g1 + p1.g0 + p1.p0.c0
c3 = g2 + p2.g1 + p2.p1.g0 + p2.p1.p0.c0
c4 = g3 + p3.g2 + p3.p2.g1 + p3.p2.p1.g0 + p3.p2.p1.p0.c0

These expressions show how the carry-in signals can be obtained without waiting for them
to ripple through a 4-bit adder. [20%]

(c)(i) Type 1 Type 2 Type 2

0 1 0 0
+ 1 0 1 1
+ 0
= 0 1 1 1 1

0 1 0 0
+ 1 0 1 1
+ 1
= 1 0 0 0 0

0 1 0 0
+ 1 0 0 1
+ 0
= 0 1 1 0 1

0 1 0 0
+ 1 0 0 1
+ 1
= 0 1 1 1 0

0 1 1 0
+ 1 0 1 1
+ 0
= 1 0 0 0 1

0 1 1 0
+ 1 0 1 1
+ 1
= 1 0 0 1 0

Carry-in (c0) and carry-out (cm) signals are highlighted in yellow.

The pattern that emerges is that in Type 1 additions, ai ⊕ bi = 1 for all i, and so the carry-in
c0 is propagated through to the carry-out cm. In Type 2 additions, there is either a pair
of bits that are both zero, killing any carry that was propagating from the right, or a pair
of bits that are both one, generating a carry irrespective of any carry that was propagating
from the right: either way, the carry-out cm is independent of the carry-in c0. The logic
for the CL block is therefore Type 1 = (a0 ⊕ b0) . (a1 ⊕ b1) . . . (a(m-1) ⊕ b(m-1)) . [20%]

(ii) Let us denote the carry-in signals to each block as C0, C1 . . . C(k-1).

The latency of each block, including the multiplexor, is (m + 1)T . After this amount of
time, all of the m-bit adders would have produced their sums and carries, though only the
first block correctly, since the others have spurious Ci signals initially. But C1 is correct at
time (m+ 1)T .

If the second block is Type 2, C2 is already correct since it is independent of C1. If the
second block is Type 1, C2 will be correct after a further delay T , the multiplexor latency.
So C2 is correct at time (m+ 2)T .

Continuing this line of argument, we deduce that C(k-1) is correct at time (m + k − 1)T .
Allowing a further (m + 1)T for block k to produce its sums and carry, we find that the
total latency is (2m+ k)T . Note that block k will be the last to stabilize.

Now differentiate to find the optimal value of k:

t = (2m+ k)T =
(
2m+

n

m

)
T ⇒ dt

dm
=
(
2− n

m2

)
T ⇒ dt

dm
= 0 when m =

√
n

2 [40%]

(iii) In terms of asymptotic time/space complexities, block-carry-skip is O(n)/O(n) while
carry-lookahead is O(log n)/O(n log n). For large n, therefore, carry-lookahead is likely
to be considerably faster, albeit with a space penalty. For smaller n, block-carry-skip is
roughly m times faster than ripple-carry, with a very small space overhead, and therefore
worthy of consideration. Further speed-ups are possible using variable-size blocks. [10%]

Assessors’ remarks: A relatively unpopular question on ALUs and adders. Candidates
demonstrated an excellent understanding of carry lookahead adders in (b), but analysis
of the unfamilar block-carry-skip adder in (c) was less successful. Although most candi-
dates appreciated the different significance of the carry-in signal for type 1/2 additions,
and correctly identified the logic required to distinguish between the two types, only two
candidates calculated (and optimized) the adder’s latency correctly.

Andrew Gee
May 2019

