
Engineering Tripos Part IIB FOURTH YEAR

Module 4F14: Computer Systems

Solutions to 2022 Tripos Paper

1. Datapaths and pipelining
(a) A pipelined datapath features extra registers between the principal datapath stages. In
each clock cycle, instructions advance through just one stage of the datapath, writing their
interim results into the pipeline registers. In this way, several instructions can be in the
pipeline at the same time, one at each stage. Pipelining therefore increases instruction
throughput, though the speed-up may be limited by data and branch hazards caused by
dependencies between instructions. However, the deleterious effects of hazards can be
mitigated by a number of effective strategies including data forwarding, branch prediction
and delayed branches.

Suppose there are p pipe stages and n instructions to execute. Without pipelining, each
instruction takes (p − 1 + k)T , so n instructions take n(p − 1 + k)T . With pipelining,
all the stages need to run at the speed of the slowest stage, so we need to distinguish
between the cases k ≤ 1 and k > 1. For k ≤ 1, the slowest stage requires T . The
first instruction takes pT to execute, with each subsequent instruction adding a further T .
The time to execute n instructions is therefore pT + (n − 1)T = (n + p − 1)T . For
k > 1, the slowest stage requires kT . The first instruction takes pkT to execute, with each
subsequent instruction adding a further kT . The time to execute n instructions is therefore
pkT + (n− 1)kT = (n+ p− 1)kT .

The speed-up is the time without pipelining divided by the time with pipelining:

speed-up =

n(p− 1 + k)T

(n+ p− 1)T
→ p− 1 + k as n→∞, k ≤ 1

n(p− 1 + k)T

(n+ p− 1)kT
→ 1 +

(p− 1)

k
as n→∞, k > 1

The maximum speed-up of p is achieved when k = 1. We have assumed no pipeline stalls. [40%]

(b) Without compiler optimizations, it is reasonable to assume that the C++ will be trans-
lated “as is” to machine code. For example, each loop in Code A will include a load for
x[i], an add to accumulate the sum, another add to increment i and a conditional branch
depending on whether i is less than n. There will be many branches, each potentially
taking several clock cycles if the branch hazards are not resolved efficiently.

In comparison, Code B has half the number of branches and i increments, which is a
plausible explanation as to why it runs faster. On the other hand, the code is a little less
compact, so we might expect more instruction cache misses, but this is evidently a sec-
ondary consideration compared with the benefits of the two-fold loop unrolling.

Finally, Code C exposes more instruction level parallelism by breaking the dependence
between the two additions inside the loop. Whereas the two additions in Code B cannot
run concurrently, they can in Code C. We are told that the execution times are for a modern
processor, which we can therefore assume to be superscalar. The most likely explanation
for Code C running faster is therefore the concurrent scheduling of the two additions on
the superscalar pipeline. [30%]

(c) The point here is that the last two instructions are fundamentally independent of the
first three, but the repeated use of $8 introduces a write-after-read dependency between the
second add (write) and the preceding two instructions (read), which impedes out-of-order
execution. This fake dependency can be eliminated by register renaming, which makes the
code more amenable to out-of-order execution and, consequently, superscalar pipelines.

In this example, by renaming $8 to $13 in the last two instructions, the code can be sched-
uled on a 2-way superscalar pipeline as follows:

add $8,$9,$10 add $13,$11,$12

addi $8,$8,4 sw $13,B($0)

sw $8,A($0)

Note that there will not be any resource conflicts since there is only one load/store operation
scheduled at a time.

Register renaming can be performed by the compiler, though such an approach would be
limited to the set of architectural registers specified in the ISA. One can imagine how a
processor might perform register renaming in hardware, by maintaining a dynamic map of
the architectural registers to a much larger set of physical registers. [30%]

What follows is not expected of candidates, but is provided for the benefit of future genera-
tions of students who might be interested to learn more about hardware register renaming.

In a typical implementation, a new mapping is created from an architectural register to a
physical register for every write operation, and later freed when the contents of the physical
register are no longer required.

Returning to the present example, and assuming the following initial mapping from archi-
tectural to physical registers

$8->p11 $9->p12 $10->p13 $11->p14 $12->p15

with physical registers 16–200 free, the registers could be renamed dynamically, in hard-
ware, as follows:

instructions map table renamed instructions

$8 $9 $10 $11 $12

p11 p12 p13 p14 p15

add $8,$9,$10 p16 p12 p13 p14 p15 add p16,p12,p13

addi $8,$8,4 p17 p12 p13 p14 p15 addi p17,p16,4

sw $8,A($0) p17 p12 p13 p14 p15 sw p17,A(0)

add $8,$11,$12 p18 p12 p13 p14 p15 add p18,p14,p15

sw $8,B($0) p18 p12 p13 p14 p15 sw p18,B(0)

Note how the renamed instructions correctly preserve read-after-write dependencies, but
destroy write-after-read dependencies, making out-of-order execution more viable. There
are, of course, many subtleties (e.g. when to free a physical register, how the addi instruc-
tion uses the old $8 mapping for its source operand but the new mapping for its destination
operand), but hardware register renaming is one of the most elegant concepts in computer
architecture and is used in all modern processors. See also Tomasulo’s algorithm.

Assessors’ remarks: This question tested candidates’ understanding of pipelined datap-
aths. In (a), most candidates offered a good summary of what is meant by a pipelined
datapath, and most concluded correctly that all stages should have the same latency for
optimal speed-up, though algebraic rigour was often lacking, with many not realising that
different analyses were required for k ≤ 1 and k > 1. In (b), a significant minority
of candidates overlooked the simple fact that Code B has fewer branches and increments
than Code A, instead arguing unconvincingly that the performance difference is due to
more subtle issues involving caching and data hazards. When discussing Code C, solu-
tions which failed to mention the word “superscalar” gained little credit. Part (c) asked
candidates to extrapolate beyond the syllabus to examine the benefits of register renaming.
It was pleasing to see most candidates understand how renaming allowed the instructions
to be scheduled efficiently on the superscalar pipeline, and many speculated intelligently
about the feasibility of implementing register renaming in hardware.

2. Adders
(a) Amdahl’s Law says that it is of paramount importance to optimise the speed of those
components that are most frequently used in a computer system (“make the common case
fast”). For most instruction set architectures, ALUs are used at least once in the execution
of just about every instruction. Faster ALUs would therefore have a significant impact on
the speed of the overall system.

For a typical MIPS datapath without pipelining, the longest path is for the lw instruction,
which needs to access sequentially the instruction cache, the register file, the ALU, the
data cache and then the register file again. Assuming the register file has a latency of T
and the ALU and caches have a latency of 2T , the clock period could not be shorter than
8T . If the ALU were half as fast, this would increase to 10T , which is 25% slower.

With pipelining, and assuming the same latencies as above, the ALU (along with the
caches) are the rate-limiting factor for the entire pipeline. So if the ALU were half as
fast, the pipeline would also run half as fast, i.e. 100% slower. [20%]

(b) Suppose we are adding the two 64-bit binary numbers a63...a0 and b63...b0. Define
two terms, generate (gi) and propagate (pi): gi = ai.bi, pi = ai + bi. We can use the generate

and propagate signals to design a simple, fast 4-bit adder:
c1 = g0 + p0.c0
...
c4 = g3 + p3.g2 + p3.p2.g1 + p3.p2.p1.g0 + p3.p2.p1.p0.c0
Four of these 4-bit adders can be connected using a higher level of carry-lookahead:
P0 = p3.p2.p1.p0
...
P3 = p15.p14.p13.p12
and
G0 = g3 + p3.g2 + p3.p2.g1 + p3.p2.p1.g0
...
G3 = g15 + p15.g14 + p15.p14.g13 + p15.p14.p13.g12
and
C1 = G0 + P0.c0
...
C4 = G3 + P3.G2 + P3.P2.G1 + P3.P2.P1.G0 + P3.P2.P1.P0.c0
Four of these 16-bit adders can be connected together, using carry lookahead, to make a
64-bit adder.
P160 = P3.P2.P1.P0
...
P163 = P15.P14.P13.P12
and
G160 = G3 + P3.G2 + P3.P2.G1 + P3.P2.P1.G0
...
G163 = G15 + P15.G14 + P15.P14.G13 + P15.P14.P13.G12
and
C161 = G160 + P160.c0
...
C164 = G163 + P163.G162 + P163.P162.G161 + P163.P162.P161.G160 + P163.P162.P161.P160.c0

Note that the carry signals Ci at the 4-bit level cannot be generated until the 16-bit carries
are known. Likewise, the carry signals ci at the 1-bit level depend on the 4-bit carry signals.

Gate delay Signals available Generated from
0 ai,bi,c0 —
1 gi,pi ai,bi
3 Pi,Gi pi,gi
5 P16i,G16i Pi,Gi
7 C16i P16i,G16i,c0
9 Ci Pi,Gi,C16i
11 ci gi,pi,Ci
13 Sums ai,bi,ci

So 13 gate delays are required to produce the sums and the carry-out. [30%]

(c)(i) The longest sum-of-product expression is for c63, i.e. the expression given in the
question. This requires AND gates with up to 65 inputs and a 65-input OR gate, both
of which could be constructed from (mostly) 4-input gates using the three-level hierarchy
described in the question. So the 65-input AND would take three gate delays, followed
by a further three gate delays for the 65-input OR. All of the other carry-in signals are
no more complex than this, so we could calculate them all in six gate delays. The sums
would come two gate delays later, add an extra one gate delay to calculate the propagate
and generate signals in the first place, and we arrive at nine gate delays in total.

In terms of space, the single level design requires 65 gates to calculate c64 (counting just
the terms in the sum-of-product expression, and neglecting for now how each large gate
might be constructed from several smaller gates), 64 gates for c63, and so on down to 2
gates for c1, making 2144 gates. Of these, the largest gates (∼ 64 inputs) would require
21 4-input gates in a three-level hierachy, the smallest would require only a single gate,
so we can estimate 11 gates for each of the 2144, making 23584. Each full adder requires
nine gates, and the propagate and generate signals require one gate each, making a total of
23584 + 704 = 24288 gates. [20%]

(ii) For the multi-level design, if we use carry-lookahead to predict m carry-in signals at
each level of the hierarchy (m = 4 in (b)), then we will need logm n levels and gates
with a fan-in of ∼ m. Since each level takes a constant amount of time to operate, the
asymptotic time requirement is clearly O(logm n). In any straightforward silicon layout,
the asymptotic space requirement is O(n logm n).

For the single-level design, if we build high fan-in gates using hierarchies of m-input
gates (m = 4 in (i)), then we will need logm n levels, again giving an asymptotic time
requirement of O(logm n). The gate count, however, is much higher, since we require
1+ 2+3+4 . . .+n = n(n+1)/2 large gates to calculate the carry-in signals, O(logm n)
m-input gates to calculate each large gate, giving O(n2 logm n) overall. [20%]

(iii) Clearly, designs with high space requirements are less attractive since they require a
larger silicon die. But we are not talking about a serious issue here for 64-bit adders. More
pertinently, a higher gate count implies higher power dissipation, which is a significant
issue for a critical component like an ALU that is used during the execution of every
instruction. [10%]

Assessors’ remarks: This question tested candidates’ understanding of the role ALUs
play in CPU datapaths, and how carry-lookahead adders are designed and implemented.
Answers to (a) and (b) were generally good, with the vast majority of candidates coming
to the right conclusions about the ALU’s impact in pipelined and non-pipelined datap-
aths, and knowing how to design multi-level carry-lookahead adders. Responses to the
unfamiliar part (c) were also good, with most candidates realising that the single-level and
multi-level schemes have similar time but different space requirements. The better answers
were supported by careful and accurate quantitative analyses, while the poorer ones failed
to discriminate between the specific estimate required in (i) and the asymptotic analysis re-
quired in (ii). The only disappointment was how few candidates mentioned the increased

power demands of high gate count designs in (iii).

3. Caches and locality of reference
(a) Cache access is faster than main memory access because of its physical proximity to
the CPU and its construction out of static RAM, as opposed to slower dynamic RAM.
Data still needs to be fetched from main memory to the cache, but this overhead is easily
amortized through temporal locality of reference (so a fetched item is likely to be accessed
again soon, and this time it will be in the cache) and spatial locality of reference (so a
fetched item’s neighbours are likely to be accessed soon, so fetch blocks of data at a time,
paying the main memory latency price just once). [10%]

(b) (i) The cache capacity is 4× 4× 65536 = 1048576 = 1MiB. The index is given by⌊
byte address

bytes per block

⌋
modulo (blocks in cache) =

⌊0xA0973C8E
0x10

⌋
modulo 0x10000

= 0xA0973C8 modulo 0x10000 = 0x73C8

This is the penultimate byte in the block, so the word offset is 3 and the byte offset is 2.
The tag comprises the remaining upper bits of the address, in this case 0xA09.

(ii) The cache capacity is 4× 4× 4× 4096 = 262144 = 256KiB. The index is given by⌊
byte address

bytes per block

⌋
modulo (sets in cache) =

⌊0xA0973C8E
0x10

⌋
modulo 0x1000

= 0xA0973C8 modulo 0x1000 = 0x3C8

This is the penultimate byte in the block, so the word offset is 3 and the byte offset is 2.
The tag comprises the remaining upper bits of the address, in this case 0xA097. The byte
may reside in any of the four blocks in set 0x3C8.

(iii) The cache capacity is 4 × 4 × 32768 = 524288 = 512KiB. The byte may reside in
any of the cache blocks. The tag would be the entire block address, which is 0xA0973C8
as before. This is the penultimate byte in the block, so the word offset is 3 and the byte
offset is 2. [30%]

(c) Candidates are expected to deduce the curves’ shapes themselves, but for interest on
the next page are some actual results from an old 3.2 GHz Pentium 4.

There is the expected cubic dependency on matrixSize, but with a far lower cost per
operation when transpose = true. This is because the matrices are evidently stored in
memory row by row, so the elements of b and ct are accessed sequentially inside the inner
loop, with excellent spatial locality of reference. The same cannot be said of c: cache
misses account for the relatively poor performance when transpose = false. There is
a small price to pay in taking the transpose: while it is hard to see on the graph, the curves
do in fact cross at around matrixSize = 225.

0 500 1000 1500
0

5

10

15

20

25

30

35

40

45

50

matrixSize

ti
m

e
 (

s
)

transpose = false

transpose = true

[25%]

(d) The clock cycle time is 1/(2GHz) = 0.5 ns. So the cost of accessing main memory is
100 clock cycles. The effective CPI with a single level cache is thus:

effective CPI = baseline CPI + memory stall cycles per instruction
= 1.0 + 100× 5% = 6.0

The cost of accessing the secondary cache is 10 clock cycles. The effective CPI with a
two-level cache is thus:

effective CPI = baseline CPI + secondary cache stall cycles per instruction
+memory stall cycles per instruction

= 1.0 + 10× 5% + 100× 50%× 5% = 4.0

The speedup is therefore 6.0/4.0 = 1.5 times. We have assumed that the main memory
access time, in particular the component associated with cache miss handling, remains the
same irrespective of which cache it is servicing1. [25%]

(e) The primary cache filters accesses to the secondary cache, especially those with good
spatial and temporal locality of reference. Hence, accesses to the secondary cache tend to
have poor locality of reference, resulting in a high miss rate at this level. [10%]

1If the secondary cache has a larger block size than the primary cache, one might suppose that its miss penalty
would be larger. However, there are schemes like early restart and critical word first that allow the CPU to restart
before the entire block has been transferred from main memory to the cache.

Assessors’ remarks: This question tested candidates’ understanding of caches. In (a),
almost all candidates demonstrated a sound understanding of the motivation for including
a cache between the CPU and main memory. While there were many good answers to
(b), a significant number of candidates could not calculate cache sizes, indices and tags,
which was surprising given that a similar question featured on the examples paper. In
(c), while most candidates realised how transposing the matrix improved spatial locality
of reference, there were several who argued that this would somehow improve the O(n3)
complexity of matrix-matrix multiplication! Answers to (d), estimating the performance
improvement possible with a secondary cache, were satisfactory but not always entirely
accurate. In (e), a pleasingly large number of candidates realised that the primary cache
would filter accesses with good locality of reference, leading to a high miss rate in the
secondary cache.

Andrew Gee
May 2022

