
Engineering Tripos Part IIB FOURTH YEAR

Module 4F14: Computer Systems

Solutions to 2024 Tripos Paper

1. Instruction set architectures and adders
(a) Fixed-width 32-bit RISC instructions do not exhibit good code density. The MIPS add

instruction is a good case in point: the 5-bit shamt field is unused, and we should not need
to waste 12 bits on op and funct to specify add, since there are fewer than 212 MIPS
instructions! If we could reduce the memory requirements of the instruction stream, we
might expect fewer instruction cache misses and hence fewer main memory accesses, de-
creasing both execution time and power consumption, the latter being especially important
for mobile devices.

Low code density is the price paid for the convenience of regular, predictable, fixed-width
32-bit instructions. CISC ISAs have better code density at the expense of variable length
instructions, which might take several clock cycles to fetch.

In contrast, with RISC 16-bit compressed instructions, no fetch capacity is wasted. In fact,
two of them can be fetched at once. However, there are some obvious downsides too.
Comparing the two add instructions, we see only 3-bit fields in MIPS16e for the register
identifiers, allowing access to only eight of the 32 general purpose registers. Immediate
operands, typically 16-bit in regular MIPS, would also need to be shorter (they are typically
only 8 bits in MIPS16e). MIPS16e instructions might save further space by using the same
register as both a source and destination operand. This all amounts to a smaller number
of less powerful, less flexible instructions in MIPS16e than in MIPS. Any advantages of
the compressed instruction stream might be immediately lost if, for example, we needed
several compressed instructions to replace a regular 32-bit one.

However, if the MIPS implementation allows cost-free switching between regular 32-bit
MIPS and MIPS16e modes (as many of them do), it may be beneficial to code specific,
amenable functions in MIPS16e, with the rest of the program in 32-bit MIPS. [50%]

(b) A 16-bit ripple-carry adder is formed by daisy-chaining 16 full adders, with the carry-
out of adder k connected to the carry-in of adder k + 1. Asymptotic time and space re-
quirements are both clearly O(n).

A 16-bit carry-select adder is formed of paired blocks of ripple-carry adders. One adder
in a pair assumes the carry-in is 0, the other assumes the carry-in is 1, with both additions
performed in parallel. Once the correct carry-in is available from previous blocks, the
correct sums are selected using multiplexors. Assuming the selection logic takes the same
amount of time as a full adder, it follows that, for optimal performance, most of the blocks
should be one bit longer than their immediate predecessors. An optimal design for a 16-bit
adder would therefore be:

c0

1 1 1 1

0000 2−bit adder2−bit adder

2−bit adder3−bit adder

3−bit adder4−bit adder

4−bit adder

5−bit adder

5−bit adder

For an n-bit adder, the left hand block will need to be of size m, where m + (m − 1) +
(m− 2) + . . .+ 3 + 2 + 1 + 1 ≥ n. Noting that

m∑
i=1

i =
m(m+ 1)

2

we obtain
m(m+ 1)

2
+ 1 ≥ n ⇔ m2 +m− 2n+ 2 ≥ 0

Solving for the equality, we obtain

m =
−1±

√
1 + 8(n− 1)

2

As n → ∞, the positive solution approaches
√
2
√
n, so m ≥

√
2
√
n. Since the adder

will take m time units to operate, its asymptotic time requirement is therefore O(
√
n). The

asymptotic space requirement is clearly O(n).

The asymptotic time and space requirements of a carry-lookahead adder are O(log n) and
O(n log n) respectively. For large n, the carry-lookahead adder is therefore faster than
both ripple-carry and carry-select adders, but it does require more space. [50%]

Assessor’s remarks: An unpopular question that was nevertheless answered well by those
candidates who attempted it. In (a), credit was awarded for sensible, intelligent discus-
sions, of which there were many. All candidates identified the more limited number of
registers available as MIP16e operands, but one or two failed to identify the obvious in-
struction fetching/caching advantages of MIPS16e. Responses to (b) were generally good,
apart from a couple of candidates who confused carry-select adders with block carry-skip
adders. The best answers provided a thorough justification of the O(

√
n) time complexity

of carry-select adders.

2. Caches and locality of reference
(a) Direct mapped caches have the lower hit time, since the index points to a unique block
and no searching of the cache is required. However, since there is no choice of which
block to replace on a miss, we might replace blocks that are going to be referenced again
soon: this will lead to a high miss rate. In a set-associative cache, the index points to a
(typically small) set of blocks that must be searched, increasing the hit time. But there is
some flexibility as to which block to replace on a miss. We could, for example, consider
temporal locality of reference and replace the least recently used block, thereby reducing
the miss rate. [20%]

(b)

[30%]

Block address

Byte address

012

=

34151631

Tag

Index

Block offset

offset
Byte

entries

Hit

Data

128 bits16 bits

V Tag Data

4K

MUX

(c) Matrices are stored in memory row by row, so the elements of a are accessed sequen-
tially inside the inner loop, with excellent spatial locality of reference and subsequent
cache hits. The same cannot be said of b, where at each iteration of i there are C accesses
at a stride of R bytes, before wrapping back to a similar set of addresses (just shifted along
by one byte) at the next iteration of i.

When R = C = 1500, each matrix requires 2.25 MB of storage, so both will comfortably fit
in the processor’s L3 cache (the modest i5-7500T CPU used for the timings in the question
has a L3 cache size of 6 MiB). So, assuming sufficient associativity, there should be no L3
cache conflicts and each block will be fetched from main memory just once. There should
be no more than 2× 1500× 1500/k main memory accesses, where k is the block size.

However, when C = 150000, only about 1.4% of the two matrices will fit in the L3 cache,
and there will therefore be a lot of block replacement. We do not wrap back to the begin-
ning of b until 150000 accesses later, by which time the first block of b would most likely
have been replaced in the cache. So we get mostly cache misses when accessing b, without
the factor of k reduction in main memory accesses. This is why it takes around 250 times
longer when C = 150000, even though there are only 100 times more operations. [25%]

(d) (i) The code segment calculates the transpose of the 1500 × 150000 matrix a, storing
the result in the 150000× 1500 matrix b. [10%]

(ii)

[15%]

a

1 2 3 4 5 6 99 100

100

99

6

1

2

3

4

5

b

In contrast to the earlier code which processes one entire row
of a and one entire column of b at a time, this code processes
the matrices in blocks. First block 1 of a is transposed into
block 1 of b, then block 2 and so on up to block 100. Since
each block is only 1500 × 1500, each pair of blocks will
fit entirely in the L3 cache and we can expect a block to
take 8 ms to transpose, with the entire operation therefore
taking 100× 8 = 800ms — or maybe even a little less given
that some cache blocks will likely straddle matrix blocks and
therefore not require fetching at the next k iteration.

Assessor’s remarks: This popular question tested the candidates’ understanding of caches
and how they might influence the way software is written. It was generally very well an-
swered. In (a), almost all candidates offered perfect comparisons of direct-mapped and
set-associative caches. In (b), the vast majority of candidates correctly identified the vari-
ous bit fields of the address and how they were used in the cache. In (c), many candidates
explained the timings convincingly, though some suggested that entire rows of the matrix
could fit into a single cache block, while others neglected to reference the 800 ms expected
run-time of the larger example given the number of elements to transpose. In (d), the vast
majority of candidates identified the use of blocking to improve locality of reference.

3. Datapaths and pipelining
(a) A pipelined datapath features extra registers between the principal datapath stages. In
each clock cycle, instructions advance through just one stage of the datapath, writing their
interim results into the pipeline registers. In this way, several instructions can be in the
pipeline at the same time, one at each stage. Pipelining therefore increases instruction
throughput.

The term hazard is used to describe dependencies between instructions which disrupt the
operation of a pipelined datapath. Data hazards occur when an instruction requires data
before a previous instruction has written it to the register file. Branch hazards occur when
the address of the next instruction is required (for instruction fetching) before an earlier
conditional branch instruction has been evaluated. [20%]

(b)

X

M

U

3

memory

Data

ALU

X

M

U

B

X

M

U

A

X

M

U

4

Forwarding

unit

ID/EX
Read reg 1

ID/EX
Read reg 2

Address Read data

Write data

EX/MEM MEM/WB

EX/MEM Write reg

MEM/WB Write reg

ForwardB

ForwardAID/EX

Registers

Read data 1Write data

Read reg 2

Write reg

Read reg 1

Read data 2

Instruction [25−21]

Instruction [20−16]

Instruction [15−11]

The forwarding unit compares the registers that have just been read (“read reg 1” and “read
reg 2”) with any registers about to be written by the two downstream instructions. If they
are the same, it sets MUXA and/or MUXB to ignore the value read from the register file
and instead use the appropriate forwarded value. [20%]

(c) The data in x is best thought of as a 512×512 matrix X, with rows stored consecutively
in the array. For j ≥ 1, the code replaces Xi,j with Xi,j−1, with the effect of copying the
first element in each row of X to all the other elements in the row.

(i) The buggy compiler has produced code that increments the array index $10 once for
every element copied. This would have the effect of copying the top-left element of X
into the following 512 × 511 subsequent elements, unlike the C++ code which does not
copy the last element in a row into the first element of the next row. What is missing is
an extra increment, i.e. addi $10,$10,4, immediately before the final bne, to move the
index from the last element of a row to the first element of the next row.

While this was the only bug specifically asked about, there are others. $8 and $9 should be
incremented/initialized by 1, not 4, since they represent i and j which count up to 512. [15%]

(ii) The pipeline will have to stall for three clock cycles after each branch instruction, since
the PC is updated at the fourth pipe stage. For standard data forwarding to the ALU inputs
as shown above, and assuming no delayed loads, the pipeline would also have to stall for
one clock cycle between the lw and the sw, since the data is read from memory by the lw

at the same time it is required at the ALU inputs by the sw. [15%]

(iii) Including the stalls, the inner loop as written would take 9 clock cycles to execute.
We could avoid the stall between the lw and sw, and hence reduce the inner loop execution
time to 8, by moving one or both of the addi instructions to before the sw. Unrolling the
inner loop by a factor of n would reduce the number of addi and branch instructions (and
the three subsequent stalls) by the same factor. Assuming the less compact code still fits
in the instruction cache, this would improve the performance significantly (e.g. for n = 2,
one iteration of the unrolled loop would take 10 clock cycles compared with 2 × 8 = 16

previously. Switching the C++ loops would produce the same result but would destroy
spatial locality of reference to x. Unless the compiler were smart enough to spot this and
switch them back (highly unlikely), we would expect significantly impaired performance,
with the compiled MIPS instructions striding through the data 512 words at a time instead
of one word at a time, resulting in a high L1/L2 cache miss rate. [30%]

Assessor’s remarks: This question tested the candidates’ understanding of pipelining,
hazards, compiler optimizations and locality of reference. It was generally very well an-
swered. In (a), almost every candidate could explain perfectly the principles and complica-
tions of pipelining. In (b), most candidates offered a good schematic of the data forwarding
unit, though some did not highlight the essential three-input multiplexors at the ALU in-
puts. In (c)(i), around a third of the candidates correctly identified the missing increment
of $10. The rest of part (c) was not dependent on (i), with many candidates offering excel-
lent analysis of the stalls and possible optimizations, though there was some inappropriate
discussion of delayed loads given that the question stated that branch hazards are resolved
by stalling. It was good to see almost all candidates correctly context switch from pipeline
hazards to spatial locality of reference, when considering switching the order of the C++
loops, The very best responses identified the possibility of instruction cache misses with
too much loop unrolling.

Andrew Gee
May 2024

