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Question 1. A popular and straightforward question, well-answered by most candi-
dates. Almost no-one achieved a full mark on (b)(i), not recognizing the unboundedness
of the norm for k ≥ 1.

(a)(i) γ1 = 2 since

sup
1≤α≤2

‖G‖∞ = sup
1≤α≤2

sup
ω
|G(jω)| = sup

1≤α≤2
sup
ω

(
α2

ω2 + 1

) 1
2

= sup
1≤α≤2

α .

(a)(ii) The small gain theorem requires ‖K‖∞ < 1
2 , therefore any gain −1

2 < k < 1
2

guarantees asymptotic stability of the closed loop system.

(b)(i) z̄(s) = kG0(s)(w̄(s) + z̄(s)) = kG0(s)
I−kG0(s) w̄(s) =

k 1
s+1

I−k 1
s+1

w̄(s) thus

Tw→z(s) =
k

s+ 1− k .

For k ≥ 1, Tw→z(s) has a pole at k − 1 ≥ 0 and its ∞-norm is unbounded. For
k < 1,

‖Tw→z(s)‖∞ = sup
ω
|Tw→z(jω)| =

(
k2

ω2 + (1− k)2

) 1
2

=
k

1− k .

(b)(ii) Since ‖∆‖∞ ≤ 1, the small gain theorem guarantee asymptotic stability of the

closed loop if ‖Tw→z(s)‖∞ = | k1−k | < 1. Specifically, k2

(1−k)2
< 1 if and only if

k2 < (1− k)2 = k2 + 1− 2k, that is, 0 < 1− 2k . It follows that the closed loop is
asymptotically stable for any −∞ < k < 1

2 .

(b)(iii) For ‖∆‖∞ ≤ ρ, asymptotic stability of the closed loop is preserved if ‖Tw→z(s)‖∞ =

| k1−k | < 1
ρ . Note that lim

|k|→0

k2

(1−k)2
= 0. Therefore, k2

(1−k)2
< 1

ρ2
can be achieved, for

any given ρ, by choosing a sufficiently small value for k.
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Question 2. There were good attempts at this question by most candidates. Some
candidates did not consider the specific role of the weighting function W2 in question
(a). The bookwork in (b)(ii) was sometimes poor. (b)(iii) has been poorly addressed by
most of the candidates, not taking advantage of standard arguments on sensitivity and
complementary sensitivity functions. Most candidates knew where they were going with
this question.

(a)(i) By the small gain theorem, K(s) guarantees robust stability for G(s) = (I +
100∆(s))G0(s) = (I +W2(s)∆(s)W2(s))G0(s) if

‖Td→y0‖∞ <
1

‖W2∆W2‖∞
.

This is equivalent to

‖Tw2→z2‖∞ <
1

‖∆‖∞
.

By assumption, ‖Tw2→z2‖∞ < 1 = 1
‖∆‖∞ , as required.

(a)(ii) For the first bound,

1 > ‖Tw2→z2‖∞ = sup
ω
σ̄(Tw2→z2(jω)) = sup

ω
σ̄(W2(jω)Td→y0(jω)W2(jω))

= 100 sup
ω
σ̄(Td→y0(jω)) = 100‖Td→y0‖∞ .

For the second bound, note that Tr→e(s)− Td→y0(s) = 1. Thus, 1 = σ̄(Tr→e(jω)−
Td→y0(jω)) ≤ σ̄(Tr→e(jω))+σ̄(Td→y0(jω)) therefore σ̄(Tr→e(jω)) ≥ 1−σ̄(Td→y0(jω)) .
It follows that

‖Tr→e‖∞ = sup
ω
σ̄(Tr→e(jω)) ≥ 1− sup

ω
σ̄(Td→y0(jω)) = 1− ‖Td→y0‖∞ >

99

100
.
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Figure 1: (b)(i)
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(b)(ii) The robust performance problem addresses the question of what is the largest pos-
sible gain from the disturbances to the errors in the presence of the uncertainties
∆. Using the form of a generalized plant P and an extended set of perturbations,
the robust performance problem can be addressed as a robust stability problem.
For this reason, robust performance can be approached using the same techniques
as robust stability, for example by a design based on structured singular value. A
detailed characterization is in Section 4.4.3 of the handouts.

(b)(iii) Consider 1
α2 + 1

β2 ≤ 1. Note that

‖Tw1→z1‖∞ = ‖W1Tr→eW1‖∞ = α2‖Tr→e‖∞ ;

‖Tw2→z2‖∞ = ‖W2Td→y0W2‖∞ = β2‖Td→y0‖∞ .

Since Tr→e(s)− Td→y0(s) = 1,

1 = ‖Tr→e − Td→y0‖∞ ≤ ‖Tr→e‖∞ + ‖Td→y0‖∞ ≤
1

α2
‖Tw1→z1‖∞ +

1

β2
‖Tw2→z2‖∞ .

(1)
Suppose now that some controller K guarantees ‖Tw1→z1‖∞ < 1 and ‖Tw2→z2‖∞ <
1. Then, from (1) we reach the contradiction 1 < 1

α2 + 1
β2 ≤ 1 since

1

α2
‖Tw1→z1‖∞ +

1

β2
‖Tw2→z2‖∞ <

1

α2
+

1

β2
≤ 1 .
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Question 3. The least popular question, with the lowest mean. Reasoning simultane-
ously in the state-space domain and in the frequency domain appears to be the dominant
obstacle.

(a) The state-space model of the feedback system is ẋ = −x ± 2φ(x). Equilibria are
defined by x = ±2φ(x). The negative feedback system has one stable equilibrium
at x = 0 (the linearized behavior is δẋ = −3δx). The positive feedback system
has three equilibria: −2, 0, 2. The linearization is δẋ = −δx when the saturation
is active and δẋ = +δx when the saturation is non active. Therefore the positive
feedback system is a bistable system. The unstable equilibrium divides the state-
space into two disjoint basins of attraction.

(b) The state-space model of the feedback system is

ẋ1 = x2

εẋ2 = −x2 − x1 + 2φ(x1)
(2)

The system is a fast-slow system because of the small parameter ε. Trajectories
converge in the fast time scale towards the isocline x2 = x1 + 2φ(x1). In the slow
time scale, they slide along the isocline to converge either to the equilibrium x1 = 2
or to the equilibrium x1 = −2. The separatrix between the two basins of attraction
is the stable manifold of the saddle point x1 = 0. The separatrix is close to the
vertical axis x1 = 0 when ε is small.

x1

x2

x2 = −x1 + 2φ(x1)

(c) Choose H(s) for the equilibrium at zero to be unstable. For instance, H(s) =
K

(s+1)3
will make the origin unstable if K is large enough, say K = 2. Because

the linear system is stable, a bounded input produces a bounded output. Because
of the saturation, the input of the linear system is always bounded. Therefore
trajectories cannot grow unbounded. Bounded trajectories around an unstable
equilibrium suggest an oscillatory behavior. The frequency and the amplitude of
the oscillation can be predicted by describing function analysis. Because φ is a odd
nonlinearity, its describing function is a real function of ω, therefore the frequency
of the oscillation is provided by the intersection of H(jω) with the negative real
axis, that is, for ω = 1

2 . The amplitude is the oscillation is the solution of the
equation H(j 1

2)N(A, 1
2) + 1 = 0.

(d) Equilibria only depend on the static gain H(0) and conclusions about their existence
are the same as in (a) if H(0) > 1. Stability of the equilibria where the saturation
is active is also unchanged, since the linerization at those equilibria reduces to the
stable (open-loop) transfer function H(s). Stability of the zero equilibrium is the
stability of the linear system H(s) in a unity feedback configuration. Here the
conclusions for the transfer function in (a) can be different than the conclusions for
an arbitrary stable transfer function (as shown for instance by the example in (c)).
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Question 4 A popular question, generally well answered. Marks were mostly lost in
d(i) .

(a)

V̇ =
∂E

∂x
ẋ+ ẋ(−∂E

∂x
− kẋ) = −kẋ2 ≤ 0

(b) The potential is a single well when α ≥ 0 and a double well when α > 0. The
Duffing system describes the behavior of a ball rolling in the well with a friction
coefficient k > 0 and a horizontal external forcing of the well by u.

x1

E

x1

Eα > 0 α < 0

(c) The equilibrium is stable when k = 0 because V is positive definite and non in-
creasing along solutions. For k > 0, Lyapunov analysis implies convergence of all
solutions to the set ẋ = 0. The largest invariant set in that set is the equilibrium.
Therefore the equilibrium is stable. Because V is proper, the equilibrium is globally
asymptotically stable, that is, the basin of attraction is the entire state-space.

(d)(i) With a nonzero force u, we have

V̇ = −kẋ2 + uẋ ≤ uẋ

This means that the system is passive from the force u to the output y = ẋ, with
storage V and supply rate uy. The storage is the internal energy of the mechanical
system, whereas the supply rate is the mechanical power.

(d)(ii) The transfer function H(s) is strictly positive real, i.e. the real part of H(jω) is
strictly positive for any ω. The passivity theorem states that the feedback intercon-
nection of a strictly passive and a passive system defines a strictly passive system.
The implication is that the feedback controller u = −kpẋ− kix makes the feedback
system stable for any choice of kp > 0 and ki > 0.

(e)(i) The linearisation is δẍ − αδx + δẋ = 0. The product of the two roots of the
characteristic equation is −α < 0, which means that the two eigenvalues of the
Jacobian matrix are real and of opposite sign, i.e. the equilibrium is a saddle point.

(e)(ii) The energy looks indeed as a saddle near (x, ẋ) = (0, 0).

(e)(iii) For small damping, the behavior is the behavior of a ball rolling with small friction
in a double well. If the ball starts close to the saddle, it returns close to the saddle
and only needs a little perturbation to fall down on either side of the double well.
This means that under small forcing, the long-term behavior is hard to predict even
if the forcing is deterministic (for instance harmonic forcing).
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