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Q1 Internal stability, small gain theorem, block diagrams
23 attempts, Average mark 13.9, Maximum 19, Minimum 8.

A popular question, well-answered by most candidates. Part (a), (b), and (d) were
well answered, in general. A few mistakes in the analysis of controller K3 in part (c).
Difficulties in handling norms correctly in Part (e).

(a) From the block diagram we have e1 = d1 +Ke2 and e2 = d2 +Ge1 therefore[
d1

d2

]
=

[
I −K
−G I

] [
e1

e2

]
Thus, [

e1

e2

]
=

[
I −K
−G I

]−1 [
d1

d2

]
=

[
Td1→e1 Td2→e1
Td2→e1 Td2→e2

] [
d1

d2

]
where Tdi,ej is the transfer function from the input di to the output ej . Specifically

e1 = d1 +Kd2 +KGe1 = (I −KG)−1︸ ︷︷ ︸
Td1→e1

d1 + (I −KG)−1K︸ ︷︷ ︸
Td2→e1

d2

e2 = d2 +Gd1 +GKe2 = (I −GK)−1G︸ ︷︷ ︸
Td1→e2

d1 + (I −GK)−1︸ ︷︷ ︸
Td2→e2

d2

Using the suggested identities, note that Td2→e1 = K(I − GK)−1 and Td1→e2 =
G(I −KG)−1, which conclude the answer.

(b) We show that each component of the matrix is bounded. Define a =‖G ‖∞ and
b =‖K ‖∞, both well defined since G and K are in H∞. Define c =‖KG‖∞< 1.

‖ (I −KG)−1 ‖∞ ≤ 1

1− ‖KG‖∞
=

1

1− c

‖G(I −KG)−1 ‖∞ ≤ ‖G‖∞
1− ‖KG‖∞

=
a

1− c

‖K(I −GK)−1 ‖∞ = ‖ (I −KG)−1K ‖∞ ≤
‖K ‖∞

1− ‖KG‖∞
=

b

1− c

‖ (I −GK)−1 ‖∞ = ‖ I +G(I −KG)−1K ‖∞ ≤ 1+
‖G‖∞‖K ‖∞
1− ‖KG‖∞

= 1 +
ab

1− c

The closed loop is internally stable since all transfer functions from d1, d2 to e1, e2,

y1, y2 are in H∞. This is equivalent to show that

[
I −K
−G I

]−1

is in H∞.

(c) K1 guarantees nominal closed loop stability since ‖ K1G ‖∞= ‖ G ‖∞< 1. K3

guarantees nominal closed loop stability since ‖K3G‖∞= maxω |K3(jω)G(jω)| and
at each frequency |K3(jω)G(jω)| ≤ |K3(jω)||G(jω)| < 1.

The stability of the closed loop system with the controller K = K2 cannot be
determined from the Bode diagrams. We have ‖ K2G ‖∞ > 1 but this does not
imply instability of the closed loop, in general.
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(d) Additive uncertainties act on the closed loop system as shown in Fig. 1 below. By
the small gain theorem, the closed loop is stable against any perturbation ∆ if the
transfer function Tw→z from w to z satisfies

‖ Tw→z ‖∞ = ‖ (I −KG)−1K ‖∞ <
1

‖ ∆ ‖∞
.

(e) From (c), recall that K = K1 and K = K3 guarantee maxω |K(jω)G(jω)| < 1.
Consider

‖ (I −KG)−1K ‖∞≤ max
ω

|K(jω)|
1− |K(jω)G(jω)| ≤

‖ K ‖∞
1− ‖ KG ‖∞

.

From (d), robust stability is thus guaranteed if

‖ K ‖∞
1− ‖ KG ‖∞

<
1

‖ ∆ ‖∞
that is ‖ ∆ ‖∞ <

1− ‖ KG ‖∞
‖ K ‖∞

.

It follows that

b =
1− ‖ KG ‖∞
‖ K ‖∞

.

We now use the Bode diagrams.

For K = K1, ‖ K1 ‖∞ = 1 and ‖ K1G ‖∞≤ −6 dB ' 0.5012. Thus,

b = 1− 0.5012 = 0.4988 .

For K = K3, ‖ K3 ‖∞≤ 8 dB ' 2.5119 and ‖ K3G ‖∞≤ −6 dB ' 0.5012. Thus,

b =
1− 0.5012

2.5119
= 0.1986 .

d1

d2

y1

y2

e1

e2

G

K

+

+

+

∆ wz

Figure 1: Closed loop with additive uncertainties.

Q2 Robust stability, performances, uncertainties
14 attempts, Average mark 11.9/20, Maximum 18, Minimum 5.

An unpopular question. Part (a), (b) and (e) were well answered, with minor issues in
computations. Not many students got the right range of stabilizing gains in Part (c).
Only a few students did a complete analysis in Part (d).

(a) We solve

A0(s)(1 + ∆̄(s)) =
1

s+ 2
(1 + ∆̄(s)) =

1

s+ a
1 < a < 2
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which gives

∆̄(s) = (s+ 2)

(
1

s+ a
− 1

s+ 2

)
=

s+ 2

s+ a
− 1 =

2− a
s+ a

=
2

s+ 2︸ ︷︷ ︸
W (s)

(2− a)(s+ 2)

2(s+ a)︸ ︷︷ ︸
∆(s)

.

Furthermore,

‖ ∆ ‖∞ =
1

2
sup

ω,1≤a≤2
(2− a)

√
ω2 + 2

ω2 + a
<

1

2
sup
ω

√
ω2 + 2

ω2 + 1
= 1 .

Diagram of the closed loop with multiplicative uncertainties on the actuator input:

K A0 P
r e y

d

+

−
+

+

wz
W ∆

(b) Compute the nominal transfer functions

e = r − P (s)A0(s)K(s)e = (I + P (s)A0(s)K(s))−1r =
r

1 + k
s(s+2)

=
s(s+ 2)

s2 + 2s+ k
r

and

y = −P (s)A0(s)K(s)(d+y) = −(I+P (s)A0(s)K(s))−1P (s)A0(s)K(s)d = − k

s2 + 2s+ k
d

that is

Tr→e(s) =
s(s+ 2)

s2 + 2s+ k
Td→y(s) =

−k
s2 + 2s+ k

.

Both transfer functions have poles at

p1,2 =
−2± 2

√
1− k

2

whose real part is always smaller than 0 for k > 0. Therefore, both transfer functions
are proper and have no poles in RHP or on the imaginary axis, thus both transfer
functions are in H∞.

(c) Robust stability holds for any gain k > 0.

Consider the block diagram above (part (a)). From part (a), W (s) = 2
s+2 and

‖ ∆(s) ‖∞< 1, thus 1
‖∆(s)‖∞ > 1. By the small gain theorem, robust stability is

guaranteed if
‖ Tw→z ‖∞≤ 1

where Tw→z is the transfer function from w to z. We have

z = W (s)K(s)e =
2k

s+ 2

e = −P (s)A0(s)(w +K(s)e) = −(I + P (s)A0(s)K(s))−1P (s)A0(s)w =
−1

s2 + 2s+ k
w
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therefore

Tw→z(s) =
−2k

(s2 + 2s+ k)(s+ 2)
.

It follows that

|Tw→z(jω)| =
√

4k2

((k − ω2)2 + 4ω2) (ω2 + 4)

whose maximum ‖ Tw→z ‖∞ is attained either at ω = 0 or at the peak of the second
order network 1

s2+2s+k
, given by

∂

∂ω2

(
(k − ω2)2 + 4ω2

)
= −2(k − ω2) + 4 = 0 → ω =

√
k − 2

(the peak exists for k > 2). For all k ≥ 0,

|T (j0)| = 2k

2k
= 1

and, for k ≥ 2,

|T (j
√
k − 2)| =

√
4k2

4(k − 1)(k + 2)
=

√
4k2

4(k2 + k − 2)
≤ 1 ,

which shows that ‖ Tw→z ‖∞≤ 1.

(d) The tracking performance at frequency ω is given by

|Tr→e(jω)| =
∣∣∣∣ −ω2 + 2jω

−ω2 + 2jω + k

∣∣∣∣ =

√
−ω4 + 4ω2

(k − ω2)2 + 4ω2
.

|Tr→e(jω)| gets smaller for k (sufficiently) large since lim
k→∞

|Tr→e(jω)| = 0, improv-

ing tracking at frequency ω.

By the small gain theorem, robust stability to multiplicative uncertainties ∆̄(s) on
the plant output is guaranteed if ‖ Td→y ‖∞< 1/ ‖ ∆̄ ‖∞. Necessarily then

|Td→y(jω)| < 1/|∆̄(jω)| ∀ω .

However, by construction, |Tr→e(jω) + Td→y(jω)| = 1, that is, for large k we have
|Td→y(jω)| ' 1. Thus, stability in the presence of uncertainties can be achieved
only if ‖ ∆̄ ‖∞< 1.

(e) The robust performance problem addresses the question of what is the largest pos-
sible gain from the disturbances to the errors in the presence of the uncertainties
∆. The generalized plant in Fig. 2 is a representation of the system based on three
main input/output pairs: (u, y) for control action, (d, e) for performance charac-
terization, and (w, z) for robustness. Using the form of a generalized plant and an
extended set of perturbations ∆, the robust performance problem can be addressed
as a robust stability problem, for example by a design based on structured singular
value. Please refer to Section 4.4.3 of the handouts.
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Figure 2: Generalized plant

Q3 Lyapunov stability
23 attempts, Average mark 15.4/20, Maximum 20, Minimum 7.

The definitions in the first part of the question were generally well answered though
many students failed to note that an asymptotically stable equilibrium point is also
stable. In part (c) many students failed to note that LaSalle?s theorem would be needed
to characterize the asymptotic behaviour of the system.

(a) (i) An equilibrium point xe is stable if ∀ε > 0 ∃δ > 0 s.t. ‖x(0) − xe‖ < δ ⇒
‖x(t)− xe‖ < ε ∀t > 0.

(ii) An equilibrium point xe is asymptotically stable if it is stable and ∃M > 0 s.t.
‖x(0)− xe‖ < M ⇒ x(t)→ xe as t→∞.

(iii) An equilibrium point xe is globally asymptotically stable if it is asymptotically
stable and M in (ii) can be chosen arbitrarily large.

(iv) A set D is the domain of attraction of xe if x(0) ∈ D ⇒ x(t)→ xe as t→∞.

(b) Lyapunov’s indirect method. An equilibirium xe is

(i) asymptotically stable if the equilibrium δx = 0 of its linearization is asymp-
totically stable,

(ii) unstable if the equilibrium δx = 0 of its linearization is unstable.

Limitations. Inconclusive when δx = 0 in the linearization is stable, but not asymp-
totically stable. Cannot be used to prove global asymptotic stability.

(c) (i) x = y = 0 is an equilibrium point.

V̇ =
n∑
i=1

∂V

∂xi
ẋi +

m∑
j=1

∂V

∂yj
ẏj

=
n∑
i=1

gi(xi)ẋi +
m∑
j=1

fj(yj)ẏj

=−
n∑
i=1

αigi(xi)xi −
n∑
i=1

gi(xi) m∑
j=1

fj(yj)

− m∑
j=1

βjfj(yj)yj +
m∑
j=1

[
fj(yj)

n∑
i=1

gi(xi)

]

=−
n∑
i=1

αigi(xi)xi −
m∑
j=1

βjfj(yj)yj

≤0
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V̇ = 0 implies yj = 0 since βj > 0 but not necessarily xi = 0 since αi can be
zero. So we apply Lasalle’s invariance principle to characterize the asymptotic
behaviour of the system.

The set S := {(x, y) : V (x, , y) ≤ c} for some c > 0 is a compact invariant set.

V̇ = 0 ⇒ yj = 0 ∀j and xi = 0 for i s.t. αi > 0. If αk = 0 for some k and
αi > 0 for i 6= k, then xk(t) 6= 0 implies ẏj(t) 6= 0, and hence there exists τ > t
s.t. yj(τ) 6= 0. So the largest invariant set for which V̇ = 0 is the origin, and
for any initial condition in S we have convergence to the origin.

If αi = 0 for more than one values of i then denoting by Z the set of those
values of i we have that V̇ = 0 implies that xi = 0 for i /∈ Z, yj = 0 ∀j and∑

i∈Z gi(xi) = 0. These are equilibrium points, hence for any initial condition
in S we have convergence to the set of equilibrium points that lie in S.

(ii) V (x, y) satisfies V (x, y) → ∞ as ‖x y‖ → ∞ since fj , gi are non decreasing
functions. Hence the set S in (c)(i) can be chosen arbitrarily large, so the
origin is globally asymptotically stable.

Q4 Describing function
21 attempts, Average mark 15.9/20, Maximum 20, Minimum 8.

The question was attempted by most students and was generally well answered. Most
students obtained the correct answer for part (a). Some found parts (b) and (d) more
challenging.

(a)

N(E) =
U1 + jV1

E

The function f is odd so V1 = 0.

U1 =
1

π

∫ 2π

0
f(E sin θ) sin θdθ

If E ≤ δ then f(E sin θ) = 0 so U1 = 0. If E > δ then

U1 =
4

π

∫ π/2

0
f(E sin θ) sin θdθ

=
4

π

∫ π/2

sin−1(δ/E)
E sin2 θdθ

=
4

π

∫ π/2

sin−1(δ/E)

E

2
(1− cos(2θ))dθ

=
2E

π

[
θ − sin(2θ)

2

]π/2
sin−1(δ/E)

=
2E

π

[
π

2
− sin−1(δ/E) +

1

2
sin
(
2 sin−1(δ/E)

)]

= E − 2E

π

sin−1(δ/E) +
δ

E

√
1−

(
δ

E

)2
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(b)

G(jω) =
α

(2jω + 1)2
=
α(1− 2jω)2

(4ω2 + 1)2
=
α(1− 4ω2 − 4jω)

(4ω2 + 1)2

<[G(jω)] =
α(1− 4ω2)

(4ω2 + 1)2

d[<[G(jω)]

dω2
= α
−4(4ω2 + 1)2 − 8(4ω2 + 1)(1− 4ω2)

(4ω2 + 1)4
= 0

⇒ (4ω2 + 1)(−4ω2 + 3) = 0⇒ ω2 = 3/4

So
<[G(jω)] = −α

8

The nonlinearity f(e) is sector bounded with gain ψ satisfying 0 ≤ ψ ≤ 1. So from
the circle criterion we need for stability <[G(jω)] > −1⇒ 0 < α < 8.

The circle criterion is only a sufficient condition for stability so this does not imply
the feedback system is unstable for α > 8.

(c) Noting that f(e) ≤ e we have 0 < N(E) ≤ 1. For harmonic balance we need

− 1

N(E)
= G(jω)

=[G(jω)] =
−4αω

(4ω2 + 1)2
= 0⇒ ω = 0, ω →∞

ω = 0⇒ G(jω) = α

ω →∞⇒ G(jω)→ 0

Hence harmonic balance never achieved for α > 0, so no limit cycle predicted.

(d) For δ = 0 f(e) = e, i.e. a static linear gain of 1. Hence need to find the value of β
s.t. <[G(jω)] = −1 for some ω.

G(jω) =
β

(jω + 1)3
=

β

(ω2 + 1)
3
2

e−3j tan−1 ω

=[G(jω)] = 0⇒ −3 tan−1 ω = −π ⇒ ω = tan(π/3) =
√

3

At this frequency
<[G(jω)] = −|G(jω| = −β/8

So for oscillation need β = 8 .

7


