
4F3: Optimal and Predictive Control Final Crib (2015)

E. N. Hartley

Version 5 (Post Exam)

1. (a) (20%)A function V (x) is a Control Lyapunov equation if:

• V (0) = 0

• V (x) > 0, for x 6= 0

• There exists a control law u = κ(x) such that V (Ax+Bu) ≤ V (x).

Existence of such a function implies that the system x(k + 1) = (Ax(k) +Bκ(x(k))) is stable.

(b) i. (40%)The Value function at time k is defined as:

V (x(k)) = min
u0,...,uN−1

J(x(k)).

If x(k) is at the origin, the optimal input is u(k) = 0. The origin is an equilibrium so
V (0) = 0.

The cost function is positive definite. So V (x) > 0, ∀x 6= 0.

The corresponding optimal input and state sequences are denoted:

Optimal input sequence at time k: (u∗0, u
∗
1, . . . , u

∗
N−1)

Optimal state sequence at time k: (x∗0, x
∗
1, . . . , x

∗
N−1, x

∗
N )

Assume at time k that u(k) = u∗0, and thus x(k + 1) = x∗1.

Consider the candidate (non-optimal) predicted sequences at time k + 1:

Candidate input sequence at time k + 1: (u∗1, . . . , u
∗
N−1, 0)

Candidate state sequence at time k + 1: (x∗1, . . . , x
∗
N−1, x

∗
N , Ax

∗
N ).

The corresponding cost is:

J(x∗1, ũ) = V (x0)− x∗T0 Qx∗0 − u∗T0 Ru0 − x∗TN Px∗N + x∗TN Qx∗N + x∗TN ATPAx∗N

= V (x0)− x∗T0 Qx∗0 − u∗T0 Ru0 + x∗TN (ATPA− P +Q)x∗N︸ ︷︷ ︸
0

= V (x0)− x∗T0 Qx∗0 − u∗T0 Ru0

≤ V (x0)

By optimality: V (x∗1) ≤ J(x∗1, ũ). Therefore:

V (x∗1) ≤ V (x0).

Hence V (x) is a Control Lyapunov Function and this means that the closed loop system is
stable.

ii. (15%)If A is open-loop unstable then

• Consider a candidate stabilising terminal control law uN = KxN .

• Therefore candidate terminal state for sequence at time k + 1 is xN+1 = (A+BK)xN

• Therefore need

(A+BK)TP (A+BK)− P +Q+KTRK ≤ 0.

e.g. sufficient that

(A+BK)TP (A+BK)− P = −Q−KTRK.
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Alternative solution: make P the solution of the discrete-time algebraic Riccati equation and
then the (unconstrained) finite horizon MPC with terminal cost is equivalent to the infinite
horizon LQR!

(c) We need to show that if ATPA− P = −Q, then

xTN1
PxN1 =

∞∑
i=N1

xTi Qxi.

With no terminal control law,

∞∑
i=N1

xTi Qxi =

∞∑
i=0

xTN1
AiTQAixN1

= xTN1

( ∞∑
i=0

AiTQAi

)
xN1

( ∞∑
i=0

AiTQAi

)
=

(
Q+

∞∑
i=1

AiTQAi

)
=

(
Q+AT

( ∞∑
i=0

AiTQAi

)
A

)

So, ( ∞∑
i=0

AiTQAi

)
= Q+AT

( ∞∑
i=0

AiTQAi

)
A

which is consistent with the claim.

This is the discrete-time equivalent of the argument made in the Optimal Control part of the
course for continuous-time Lyapunov equations.

An alternative approach was popular with the students. Use the Lyapunov Equation to substi-
tute Q:

∞∑
i=N1

xTi Qxi =

∞∑
i=N1

xTi (P −ATPA)xi

=

∞∑
i=N1

(
xTi Pxi − xiATPAxi

)
Since there is no input applied over this horizon, this is equivalent to:

∞∑
i=N1

(
xTi Pxi − xTi+1Pxi+1

)
= xTN1

PxN1
−xTN1+1PxN1+1 + xTN1+1PxN1+1︸ ︷︷ ︸

=0

−xTN1+2PxN1+2 + . . .

= lim
i→∞

xTN1
PxN1

+ xTi Pxi

Since A is stable limi→∞ xi → 0 and thus the condition to be verified has been shown to be
true.

2. (a) i. (15%)State constraints might represent physical limitations of the system, or operational require-
ments. For example:

• Tank level: tank level must not overflow and cannot be lower then completely empty

• Vessel pressure: must not exceed safety limits

• Chemical concentration: Must be within limits

• Temperature: must stay within specific bounds

• Spacecraft position: must maintain visibility constraint with target

• Aircraft airspeed: must remain in safe flight envelope
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• Aircraft angle-of-attack: must remain below stall point

• Toy racing car: must stay on track.

• Battery charging current: must not exceed safety limit

ii. (15%)• Advantage: modest and tractable online computation (i.e., when the controller operat-
ing on the plant) vs. arduous offline computation (i.e., at the design stage) if analytical
solution not available

• Disadvantage: a non-trivial online computation (e.g., solution to QP) must be com-
pleted sufficiently fast between sampling instants when the controller is operating on
the plant.

• Disadvantage: issues with verification/validation/certification of “correctness” of the
software and hardware to implement complex iterative optimisation algorithms in safety
critical applications

(b) (35%)The difficult part here is the right-hand sides.

1

2
(xi − xs)TQ(xi − xs) =

1

2
xTi Qxi +

1

2
xTs Qxs︸ ︷︷ ︸
fixed

−xTs Qxi

1

2
(ui − us)TR(ui − us) =

1

2
uTi Rui +

1

2
uTs Rus︸ ︷︷ ︸
fixed

−uTs Rui

So:

H =


R 0 0 0
0 Q 0 0
0 0 R 0
0 0 0 P

 , h =


−Rus
−Qxs
−Rus
−Pxs


For the equality constraints we have:

x1 = Ax(k) +Bu0 + d

x2 = Ax1 +Bu1 + d

So:

F =

[
B −I 0 0
0 A B −I

]
, f =

[
−Ax(k)− d
−d

]
Finally, for inequality constraints:

G =

E 0 0 0
0 M E 0
0 0 0 MN

 , g =

−Mx(k) + b
b
bN


Compatible scalar multiples are acceptable as long as they would give the same solution.

(c) (35%)The decision vector θ for this QP should be:

θ =

xsus
r̂

 .
The equality constraints are [

(A− I) B 0
C D −I

]xsus
r̂

 =

[
−d
0

]
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or equivalent with opposite sign and/or re-ordered rows. The inequality constraints are:

[
M E 0
MN 0 0

]xsus
r̂

 ≤ [ b
bN

]
.

The cost function is:
(r̂ − r)T (r̂ − r) = r̂T r̂ + rT r − 2rT r̂.

So, suitable values for the cost matrices are:

H =

0
0

I

 , h =

 0
0
−r

 .
Alternative solution with a slack variable:

Consider a slack variable z, and let

θ =

xsus
z


The equality constraints are

[
(A− I) B 0
C D I

]xsus
z

 =

[
−d
r

]

The inequality constraints are identical to the previous case and the cost function is then to
minimise zT z, so the cost matrices are

H =

0
0

I

 , h =

0
0
0


Alternative solution condensing out equality constraints:

Assume that there exists a matrix[
Π11 Π12

Π21 Π22

]
=

[
(A− I) B
C D

]−1 [−I 0
0 I

]
Therefore: [

xs
us

]
=

[
Π11 Π12

Π21 Π22

] [
d
r̂

]
So, we can solve:

min
r̂

1

2
r̂T r̂ − rT r̂

subject to [
MΠ12 + EΠ22

MNΠ12

]
r̂ ≤

[
b− (MΠ11 + EΠ21)d

bN − (MΠ11)d

]
Then recover xs, us from r̂ and d using the above relationship.
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3. (a) i. (20%)

‖y‖2 ≤ ‖G‖∞‖w‖2

‖y‖2 =

√∫ ∞
−∞

y(t)T y(t) dt Energy in signal

So, the H∞ norm bounds the maximum gain in the signal energy.

ii. (10%)‖G‖∞ = supω σ(G(jω))

The largest magnitude of the gain of the system over all frequencies.

(b) (40%)From the data-sheet, take the Riccati equation:

XA+ATX + CT
1 C1 −X(B2B

T
2 − γ−2B1B

T
1 )X = 0

Let:

X =

[
x1 x3

x3 x2

]
ATX =

[
0 0
1 0

] [
x1 x3

x3 x2

]
=

[
0 0
x1 x3

]
XA =

[
0 x1

0 x3

]
CT

1 C1 =

[
1 0
0 0

]
, B2B

T
2 = B1B

T
1 =

[
0 0
0 1

]
So the Riccati equation is:[

0 x1

0 x3

]
+

[
0 0
x1 x3

]
+

[
1 0
0 0

]
−
[
x1 x3

x3 x2

] [
0 0
0 1− γ−2

] [
x1 x3

x3 x2

]
Let α = 1− γ−2.[

x1 x3

x3 x2

] [
0 0
0 α

] [
x1 x3

x3 x2

]
=

[
0 x3α
0 x2α

] [
x1 x3

x3 x2

]
=

[
x2

3α x2x3α
x2x3α x2

2α

]
So the Riccati equation is:[

0 x1

0 x3

]
+

[
0 0
x1 x3

]
+

[
1 0
0 0

]
−
[
x2

3α x2x3α
x2x3α x2

2α

]
=

[
1− x2

3α x1 − x2x3α
x1 − x2x3α 2x3 − x2

2α

]
= 0

Note: some candidates in the exam defined

X =

[
a b
c d

]

ATX =

[
0 0
1 0

] [
a b
c d

]
=

[
0 0
a b

]
, XA =

[
0 a
0 b

]
So [

0 a
0 b

]
+

[
0 0
a b

]
+

[
1 0
0 0

]
−
[
a b
c d

] [
0 0
0 α

] [
a c
b d

]
= 0

In which case the Riccati equation is[
1− b2α a− bdα
a− bdα 2b− αd2

]
= 0
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Because X is symmetric, this is three equations in three unknowns.

1− x2
3α = 0 =⇒ x3 = ±

√
1

α
= ±α−1/2.

We want the stabilising solution, so the positive answer is taken.

2α−1/2 − x2
2α = 0 =⇒ x2

2 = 2α−3/2 =⇒ x2 = ±
√

2α−3/4.

Again, take the positive solution because the controller must be stabilising.

Finally (although this is not strictly needed by the question, since it is multiplied by zero to
obtain the control law),

x1 = αx2x3

=
√

2αα−3/4α−1/2

=
√

2α4/4α−3/4α−2/4

=
√

2α−1/4.

So we have: [
x1 x3

x3 x2

]
=

[
αx2x3 α−1/2

α−1/2
√

2α−3/4

]
The optimal control gain (assuming positive feedback) is:

K = −BT
2 X = −

[
0 1

] [αx2x3 α−1/2

α−1/2
√

2α−3/4

]
= −

[
α−1/2

√
2α−3/4

]
= −

[
(1− γ−2)−1/2

√
2(1− γ−2)−3/4

]
So the required control law is:

u = −
[
(1− γ−2)−1/2

√
2(1− γ−2)−3/4

]
x.

(c) i. (15%)For example (letting subscripts ub denote, “upper bound” and lb denote “lower bound”:

• Start with γ = 1.

• If infeasible

– keep doubling γ until feasible. Call this value γub and let γlb = 1.

• Else

– Keep halving γ until infeasible. This is γlb. Let γub = 1.

• γ∗ ∈ [γlb, γub]

• Use interval bisection to find minimum feasible value of γ∗

Alternatively suggest a direct line search at a pre-determined degree of granularity (poten-
tially less efficient)

ii. (15%)The data-sheet has formulae for extending to the output-feedback case. However, there are
assumptions with respect to controllability and observability. In this case, the pair (A,C2)
is not observable.

The observability matrix is:[
C2

C2A

]
=

[
0 1
0 0

]
=⇒ not full rank so not observable.

Because the system is not observable, designing the controller for the new value of C2 is
not appropriate.
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4. (a) i. (10%)A function f(x) is convex if f((1− α)x+ αy) ≤ (1− α)f(x) + αf(y), for α ∈ [0, 1].

ii. (10%)

There exist two points inside the set which cannot be linked by a single straight line segment
that stays wholly inside the set.

iii. (10%)Convexity is useful because a local optimum is also the global optimum. Moreover, efficient
algorithms can be used to find the optimal solution numerically.

(b) i. (10%)We cannot assume S = 0, so we need:

X2 ≥ 0[
Q S
ST R

]
≥ 0.

Suggested division of marks: 5% for each point.

ii. (20%)

BTX2A =
[
0.5 1

] [100 0
0 20

] [
1 1
0 1

]
=
[
50 20

] [1 1
0 1

]
=
[
50 70

]
.

R+BTX2B = 5 +
[
50 20

] [0.5
1

]
= 5 + 45 = 50.

u1 = −(R+BTX2B)−1BTX2BAx1 = − 1

50

[
50 70

]
x1 = −

[
1 7/5

]
x1

iii. (20%)For k = 2:

V (x, 2) = xTX2x, X2 =

[
100 0
0 20

]
.

For k = 1 we need to do an iteration of the Riccati difference equation (found in the data
sheet):

Xk−1 = Q+ATXkA−ATXkB(R+BTXkB)−1BTXkA.

We’ve already computed part of this in the previous subpart.

X1 = Q+ATX2A+ATX2BK1

ATX2A =

[
1 0
1 1

] [
100 0
0 20

] [
1 1
0 1

]
=

[
1 0
1 1

] [
100 100
0 20

]
=

[
100 100
100 120

]
.

From above,

ATX2B = (BTX2A)T =

[
50
70

]
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X1 =

[
1 0
0 1

]
+

[
100 100
100 120

]
−
[
50
70

] [
1 7/5

]
=

[
1 0
0 1

]
+

[
100 100
100 120

]
−
[
50 70
70 98

]
=

[
51 30
30 23

]
.

and V (x, 1) = xTX1x. If x1 = [1, 1]T , then V (x1, 1) = 134.

(c) (20%)The discrete-time finite horizon linear quadratic regulator computes a time varying control law
over a finite horizon.

The predictive controller makes a prediction using the same cost function. The predicted trajec-
tory will coincide with the trajectory obtained using the finite horizon LQR starting from the
measured state. However, only the first element of the control sequence will be applied to the
plant.

• At time k = 0, both controllers will apply the same control action.

• At time k = 1, however, the finite horizon LQR will apply u1 = K1x1 whereas the predictive
controller employs a “receding” horizon, and a new prediction is made from x1 and thus,
the MPC will apply u1 = K0x1.
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Comments from Assessor’s Report

Q1 Stability of Unconstrained MPC
17 attempts, average mark 10.41/20, Maximum 19, Minimum 0.

A relatively popular question, but with some disappointing answers. The final part (c), which drew
together material from two parts of the course was well answered by most candidates, but answers to
part (b) were disappointing despite this being essentially routine “book work”. Some candidates failed
to notice that part (a) concerned “Control Lyapunov Functions” and not simply “Lyapunov Functions”,
although the penalty for this was only 1 mark.

Q2 QP for Uncondensed Constrained MPC and Constrained target Calculation
22 attempts, average mark 12.14/20, Maximum 18, Minimum 8.

The jointly most popular question. Parts (a) and (b) were generally well answered. Some candidates
mentioned actuator positions when asked to provide examples of “state constraints”. These were given
the benefit of the doubt on the basis that the actuator slew rate is often the modelled input of the system
in MPC applications. Conversely, part (c) on constrained target calculation was found more challenging,
with only a handful of good answers, and many candidates ignored the inequality constraints, despite
these being the primary motivation for the question.

Q3 State Feedback H∞ Control
8 attempts, average mark 13.13/20, Maximum 20, Minimum 8.

The least popular question, but with a relatively high average mark. This question required recall of the
definition of the H∞, application of a Riccati equation from the data sheet to design a state-feedback
control law, and to show that a modified system was not observable. Some candidates did not notice
that part (b) did not require an observer design, since full state feedback was available, and would have
lost time as a result.

Q4 Convexity and Discrete-Time LQR
22 attempts, average mark 11.09/20, Maximum 20, Minimum 3.

The jointly most popular question. Part (a) on convex functions and sets was well answered. Part b(ii)
was well answered, but answers to Part b(iii) were prone to numerical slips. Some candidates failed
to notice that the Riccati equation from the datasheet was applicable. Most candidates were able to
explain the difference between finite horizon DLQR and unconstrained receding horizon MPC, although
(worryingly) some were of the opinion that the unconstrained MPC might have active constraints.
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