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EGT4
ENGINEERING TRIPOS PART IIB

Monday 18 April 2016 2 to 3.30

Module 4F3

OPTIMAL AND PREDICTIVE CONTROL — SOLUTIONS

Answer not more than three questions.

All questions carry the same number of marks.

The approximate percentage of marks allocated to each part of a question is
indicated in the right margin.

Write your candidate number not your name on the cover sheet.

STATIONERY REQUIREMENTS
Single-sided script paper

SPECIAL REQUIREMENTS TO BE SUPPLIED FOR THIS EXAM
CUED approved calculator allowed
Engineering Data Book

10 minutes reading time is allowed for this paper.

You may not start to read the questions printed on the subsequent
pages of this question paper until instructed to do so.
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1 Consider the active shock absorber in Figure 1. The dynamics of the system satisfies
the balance of forces ma+ kp+ cv = fh, where a is the acceleration of the mass m, p is
the displacement of the mass, v is the velocity of the mass, fh is the force exerted by a
hydraulic actuator, k is the spring constant, and c is the damping coefficient. The actuator
dynamics are approximated by a first order lag τ

(
d
dt fh

)
= − fh + u with time constant

τ > 0 and input u.

(a) (i) Given the state vector x =
[

p v fh
]T

and measured output y = p, show
that the overall system behaviour is characterised by the linear equations ẋ =

Ax+Bu, y =Cx+Du, where

A =

 0 1 0
− k

m − c
m

1
m

0 0 −1
τ

 , B =

 0
0
1
τ

 , C =
[

1 0 0
]
, D = 0 . (1)

[5%]

(ii) Show that this system is stable. [10%]

(b) Let Q be the infinite-time observability gramian: Q =
∫

∞
0 eAT tCTCeAtdt.

(i) Show that Q is a solution to the Lyapunov equation AT Q+QA+CTC = 0. [20%]

(ii) If Q > 0, show that (A,C) is observable (without computing the observability
matrix). [20%]

(c) (i) What is meant by a balanced realisation of a transfer function, and by its
Hankel singular values? [15%]

(ii) Explain how a balanced realisation of a stable system can be used to obtain
lower-order approximations of the system. [15%]

(iii) Let G(s) =C(sI−A)−1B, where A,B,C are defined in (1) for some particular
parameter values. Ĝ(s) is a second-order approximate model of G(s), obtained
from a balanced realisation. Figure 2 shows the Bode magnitude plot of E(s) =
G(s)− Ĝ(s). Estimate ‖E‖∞, and hence obtain lower and upper bounds for the
third Hankel singular value of G(s). [15%]
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SOLUTION:

(a) (i) Use the fact that a = v̇ and v = ṗ. Then we immediately have the first row
of A and B. The second row comes from v̇ =−kp/m− cv/m+ fh/m, and the third
row comes from the actuator lag: ḟh = − fh/τ +u/τ . The C and D matrices come
directly from the choice y = p.

(ii) To establish stability, find the eigenvalues of A. Expanding the determinant
by the third row gives det(sI−A) = (s+1/τ)[s(s+c/m)+k/m]. So one eigenvalue
is at −1/τ < 0 (since the time constant must be positive) and the other two are at
the roots of s2 +(c/m)s+ k/m, which have negative real parts since all coefficients
of the polynomial have the same sign (special case of the Routh-Hurwitz criterion
for quadratic polynomials), or by direct calculation using the formula for roots of a
quadratic polynomial. (We have used the fact that c, k and m are all positive.)

(b) (i) Show that Q =
∫

∞
0 eAT tCTCeAtdt is a solution to the Lyapunov equation

AT Q+QA+CTC = 0 by substitution:

AT Q+QA+CTC =
∫

∞

0
AT eAT tCTCeAt + eAT tCTCeAtAdt +CTC

=
[
eAT tCTCeAt

]∞

0
+CTC =−CTC+CTC = 0 .

Note that eAt → 0 as t→ ∞ since we already know that the system is stable.

(ii) Suppose that the pair (A,C) is not observable. Then there exists a state x 6= 0
such that CeAtx = 0 for all t ≥ 0. Thus,

0 =
∫

∞

0
xT eAT tCTCeAtxdt

= xT
∫

∞

0
eAT tCTCeAtdtx

= xT Qx for x 6= 0

which contradicts Q > 0.

(c) (i) A balanced realisation of a transfer function is one for which the observability
gramians and the controllability gramians are equal and diagonal, namely

P = Q =


σ1 0 . . . 0
0 σ2 . . . 0
...

...
...

...
0 0 . . . σn
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where Q is as in part (b), P =
∫

∞
0 eAtBBT eAT tdt is the controllability gramian, and

it is conventional to order the diagonal entries so that σ1 ≥ σ2 ≥ ·· · ≥ σn. (n is the
dimension of the state space.) The (nonnegative) real numbers σ1, . . . ,σn are called
the Hankel singular values of the system.

(ii) If the Hankel singular values are ordered as in part (i), then a lower-order
approximation of the system can be obtained by truncating the state vector, retaining
only the initial part and discarding the rest. The corresponding parts of the matrices
A, B, C are retained or discarded. It can be shown that if the original system is
stable, then the ‘reduced’ (ie approximate) system is also stable.
(Justification — not asked for in the question: state variables corresponding to
small Hankel singular values are not much affected by the input, and have little
effect on the output. Hence they play little role in the input- output behaviour, so
can be omitted without changing the input-output behaviour much. In the limit,
if a Hankel singular value were zero, the corresponding state variable would be
uncontrollable and unobservable, and so could be omitted without changing the
input-output behaviour at all.)

(iii) Since G(s) is stable (from part (a)(ii)), Ĝ(s) and hence E(s) are stable too.
Therefore ‖E‖∞ = supω |E( jω)| (noting that E(s) is a scalar transfer function,
since the system G(s) has only one input and output). Hence from Figure 4 we
get ‖E‖∞ ≈−37dB = 10−37/20 = 0.014.
In general, if the approximate system is obtained by discarding states k+1, . . . ,n in
the balanced realisation, the standard result is that

σk+1 ≤ ‖E‖∞ ≤ 2(σk+1 +σk+2 + · · ·+σn).

In this case we have k = 2 and n = 3, so we have σ3 ≤ 0.014 ≤ 2σ3. Hence
0.007≤ σ3 ≤ 0.014, approximately.
Note: If the estimation is done more accurately then ‖E‖∞ = −37.5dB = 0.0133,
which gives 0.0067≤ σ3 ≤ 0.0133. The actual value of σ3 is 0.0069.
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2 A mass-spring-damper system with a unit mass is described by the state-space
equations

ẋ = Ax+Bu+Bw =

[
0 1
0 0

]
x+

[
0
1

]
u+

[
0
1

]
w, y =Cx =

[
1 0

]
x (4)

where u = Kx =−[k,c]x is the force acting on the mass, y is the position of the mass, k is
the spring stiffness and c is the damper coefficient.

(a) Take w = 0 and consider the cost∫
∞

0
[x(t)T Qx(t)+u(t)T Ru(t)]dt, where Q =CTC and R = 1 . (5)

(i) Show that the values of k and c which minimise the cost (5) are given by[
k c

]
= BT X for X =

[ √
2 1

1
√

2

]
. [25%]

(ii) Noting that (A,B) is controllable and (A,C) is observable, what conclusion
can be drawn about the stability of (A+BK), if K =−[k,c] is chosen as in part (i)? [10%]

(b) Let u and y be the input and output signal vectors of a system with transfer function
G(s).

(i) The infinity norm ‖G‖∞ satisfies the relationship ‖G‖∞ = sup‖y‖2/‖u‖2
where the supremum is taken over all non-zero inputs with ‖u‖2 < ∞. How are
the signal norms ‖u‖2 and ‖y‖2 defined? [10%]

(ii) If V (x) = xT Xx for some X = XT > 0, G(s) =C(sI−A)−1B, and X satisfies
the Riccati equation

AT X +XA+CTC+
1
γ2 XBBT X = 0

then it can be shown that

dV
dt

+ yT y− γ
2uT u≤ 0. (6)

Show that, if (6) holds, then ‖G‖∞ ≤ γ . [20%]

(iii) For the system defined in (4), let H(s) be the transfer function from w to y. If
the coefficients k and c are chosen as in part (a)(i), show that ‖H‖∞ ≤ 1. [35%]

SOLUTION:
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(a) (i) This is the infinite-horizon LQR problem. From the Data Sheet we know
that for the finite-time LQR problem the optimal solution is u(t) = K(t)x(t) where
K(t) = −R−1BT X(t) and X(t) solves the RIccati differential equation −Ẋ = Q+

XA+AT X −XBR−1BT X . But we know that X(t) becomes constant in the limit
of the horizon becoming infinite, so for the given problem we need to solve the
algebraic Riccati equation (ARE) obtained by setting Ẋ = 0:

0 = Q+XA+AT X−XBR−1BT X

and apply the constant-gain state feedback u(t) = Kx(t) where K = −R−1BT X .
We can check that the X given in the question satisfies the ARE, noting that

Q =CTC =

[
1 0
0 0

]
and R = 1:

Q+XA+AT X−XBBT X =

=

[
1 0
0 0

]
+

[ √
2 1

1
√

2

][
0 1
0 0

]
+

[
0 0
1 0

][ √
2 1

1
√

2

]
−

[ √
2 1

1
√

2

]2

=

[
1 0
0 0

]
+

[
0
√

2
0 1

]
+

[
0 0√
2 1

]
−

[
1
√

2√
2 2

]

=

[
1−1

√
2−
√

2√
2−
√

2 1+1−2

]
= 0

We should also check that X > 0. This holds, because X1,1 =
√

2 > 0 and
detX = 2−1 > 0.
Note: The actual values of k and c (not asked for in the question) are given by:

−K =
[

k c
]
= BT X =

[
0
1

][ √
2 1

1
√

2

]
=
[

1
√

2
]

In the exam several candidates solved the ARE as if they didn’t already know the
answer. It is harder and longer to do it that way.

(ii) From infinite-horizon LQR theory we know that A+BK is guaranteed to be
stable if (A,B) is controllable and (A,C) is observable. Note: That is a sufficiently
good answer; a better answer is that the infinite- horizon cost would be infinite if
A+BK were not stable.

(b) (i) ‖u‖2 =
√∫

∞
0 u(t)T u(t)dt and ‖y‖2 is defined similarly.
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(ii) If V̇ + yT y− γ2uT u≤ 0 then, integrating,

V (x(∞))−V (x(0))+
∫

∞

0
y(t)T y(t)dt− γ

2
∫

∞

0
u(t)T u(t)dt =

V (x(∞))−V (x(0))+‖y‖22− γ
2‖u‖22 ≤ 0. (8)

But A must be stable since X > 0 and CTC+ 1
γ2 XBBT X ≥ 0 (think of the Riccati

equation as a Lyapunov equation) and we assume ‖y‖2 < ∞, so V (x(∞)) = 0.
Also for calculation of input-output norms we must assume zero initial conditions
(otherwise arbitrarily large contributions to ‖y‖2 could arise from x(0)), so we
should take V (0) = 0. Hence ‖y‖22− γ2‖u‖22 ≤ 0 for all u, so ‖y‖2/‖u‖2 ≤ γ , and
hence (by definition) ‖G‖∞ ≤ γ .

(iii) Since u = Kx we have ẋ = (A+BK)x+Bw and y =Cx, so H(s) =C(sI−A−
BK)−1B. So, using the Riccati equation given in part (b)(ii) of the question with
γ = 1, we can show that ‖H‖∞ ≤ 1 if we can show that there exists a Y = Y T > 0
such that

(A+BK)TY +Y (A+BK)+CTC+Y BBTY = 0.

Also we know that K = −BT X , where X solves the LQR Riccati equation (as in
part (a)(i)). So we have (noting that X and Y are symmetric)

(A+BK)TY +Y (A+BK)+CTC+Y BBTY =

(A−BBT X)TY +Y (A−BBT X)+CTC+Y BBTY =

ATY +YA−XBBTY −Y BBT X +CTC+Y BBTY (9)

Now trying the solution Y = X gives

AT X +XA−XBBT X−XBBT X +CTC+XBBT X =

AT X +XA+CTC−XBBT X = 0 (10)

from part (a)(i). Thus the condition given in part (b)(ii) holds with γ = 1, and so
‖H‖∞ ≤ 1.
Many (most?) candidates in the exam assumed that X and Y are the same. But two
different Riccati equations are needed in parts (a) and (b), and it is not obvious that
the same solution satisfies both.
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3 (a) (i) How is a convex set defined? [15%]

(ii) When is an optimisation problem convex? [15%]

(iii) Give two examples of convex optimisation problems. [15%]

(b) A plant with state xk and input uk at time k is described by the discrete-time state-
space model xk+1 = Axk +Buk. A predictive controller minimises the cost function

V (x0,u0,u1, . . . ,uN−1) = xT
NPxN +

N−1

∑
k=0

(xT
k Qxk +uT

k Ruk)

subject to the constraints Mxk +Euk ≤ b for k = 0,1, . . . ,N−1. Show that this problem
can be written as a standard quadratic programming problem of the form

minimise θ
T Hθ subject to Fθ − f = 0 and Gθ −g≤ 0

for suitable matrices F,G,H and suitable vectors f ,g, with the vector θ containing the
decision variables u0,u1, . . . ,uN−1 and x1,x2, . . . ,xN .

(c) A ‘terminal constraint’ of the form MNxN ≤ bN is sometimes added to predictive
control problems. Comment briefly (without technical details) on the reason for adding
such a constraint, and on the properties that it should satisfy.

SOLUTION:

(a) (i) If S is a set in Euclidean space, and x1, x2 are any two points in S, then S is
convex if and only if αx1 +(1−α)x2 is in S, where 0≤ α ≤ 1.
Very few candidates knew this way of expressing convexity of a set, but most
expressed it correctly in words (‘a straight line joining any two points . . . ’). Some
defined convexity of a function instead of a set.

(ii) An optimisation problem is convex when both the objective function and the
feasible set are convex. Note: There are various ways of expressing this, eg: if the
problem is minx f (x) subject to g(x)≤ 0 then the problem is convex if both f (.) and
g(.) are convex functions.

(iii) Two examples of convex optimisation problems are (1) linear programming
problems and (2) convex quadratic programming problems. Note: Mathematical
formulations are equally good answers, eg: (1) minx cT x subject to Ax ≤ b, (2)
minx xT Hx+cT x subject to Ax≤ b with H ≥ 0. (The condition on H is important!)
This question was unintentionally ambiguous. Some candidates gave examples of
predictive control applications (‘flying an aircraft straight and level’, ‘controlling
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the quality and strength of paper’ etc). Reasonable answers along these lines were
accepted.

(b) Let θ T = [uT
0 ,x

T
1 ,u

T
1 ,x

T
2 , . . . ,x

T
N−1,u

T
N−1,x

T
N ] (that is, include x1,x2, . . . as decision

variables, even though they are not needed in the solution). Note that x0 is not a
decision variable. Then the cost function V is quadratic in the elements of θ , so it
can be represented by the term θ T Hθ (strictly speaking, it would be enough to stop the
explanation there), where

H =



R 0 0 0 . . . 0 0 0
0 Q 0 0 . . . 0 0 0
0 0 R 0 . . . 0 0 0
0 0 0 Q . . . 0 0 0
...

...
...

...
...

...
...

...
0 0 0 0 . . . Q 0 0
0 0 0 0 . . . 0 R 0
0 0 0 0 . . . 0 0 P


Equality constraints arise from xk+1 = Axk +Buk which can be written as Axk +Buk−
xk+1 = 0 for k = 0,1, . . .N, or Fθ − f = 0, where f T = [(Ax0)

T ,0,0, . . . ,0] and

F =


B −I 0 0 . . . 0 0 0
0 A B −I . . . 0 0 0
...

...
...

...
...

...
...

...
0 0 0 0 . . . A B −I


The inequality constraints Mxk + Euk ≤ b for k = 0,1, . . . ,N − 1 can be written as
Gθ −g≤ 0, where gT = [(Mx0−b)T ,−bT ,−bT , . . . ,−bT ,0] and

G =



E 0 0 0 . . . 0 0 0
0 M E 0 . . . 0 0 0
0 0 0 M . . . 0 0 0
...

...
...

...
...

...
...

...
0 0 0 0 . . . M E 0
0 0 0 0 . . . 0 0 0


Note that there is no constraint on xN .

(c) A terminal constraint is sometimes added to ensure recursive feasibility of a
predictive controller, ie to ensure that once a feasible solution has been found, the problem
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remains feasible at all future time steps. To achieve this, the terminal constraint should
be constraint admissible (ie should be achievable with inputs and states which are within
constraints) and should be positively-invariant under the action of the terminal control law
implied by the model and the cost function.

4 An unconstrained predictive controller determines the input signal u(k) at time k by
minimising the cost function

V (x(k),u) = xT
NPxN +

N−1

∑
i=0

(xT
i Qxi +uT

i Rui)

where x(k) is the measured current state, x0 = x(k),

xi+1 = Axi +Bui for i = 0,1, . . . ,N−1

and setting u(k) = u∗0, where the minimising input sequence is

u∗ = (u∗0,u
∗
1, . . . ,u

∗
N−1).

(a) Explain why repeated determination of the input signal in this manner results in a
feedback system. [10%]

(b) What is meant by the phrase terminal cost in this context? [10%]

(c) Assume that P > 0, Q > 0 and R > 0, and that K is a matrix such that all the
eigenvalues of A+BK lie within the unit circle. Show that, if

(A+BK)T P(A+BK)−P≤−Q−KT RK

then the origin (x = 0) of the closed-loop system with the predictive controller is
asymptotically stable. [50%]

(d) A particular 1-input, 1-state system has A = 1.2, B = 1, and the control system
designer chooses Q = 5 and R = 2. Find a P which results in an asymptotically stable
closed-loop system. [30%]
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SOLUTION:

(a) The next state x(k + 1) will be mostly determined by the input u(k) = u∗0 (not
completely, because of disturbances and model errors). The next input u(k+ 1) will be
computed on the basis of the measured value of x(k+ 1). So the input depends on the
latest measurement, which defines a feedback system.

(b) Terminal cost refers to the term xT
NPxN in the cost function of the predictive

controller.

(c) The strategy is to show that if the inequality is satisfied then the value function
V ∗(x(k)) = minuV (x(k),u) is a Lyapunov function for the closed-loop system. We
assume that the model represents the system behaviour exactly.

At time k we have the optimal solution u∗ = (u∗0,u
∗
1, . . . ,u

∗
N−1). At the next step we could

apply the input sequence
ũ = (u∗1,u

∗
2, . . . ,u

∗
N−1, ũN)

for some input ũN to be applied at the end of the horizon. Furthermore, we could choose
ũN = KxN , which would give a terminal state x(k+N+1) = AxN +BKxN = (A+BK)xN .
The cost obtained with this choice of input is

V (x(k+1), ũ) = x(k+N +1)T Px(k+N +1)+
N−1

∑
i=1

(x∗Ti Qx∗i +u∗Ti Ru∗i )+ x∗TN Qx∗N + x∗TN KT RKx∗N (11)

where x∗i denotes the state at step k+ i resulting from applying the input sequence u∗ at
time k. This differs from V ∗(x(k)) by subtracting terms corresponding to the old first step
and adding terms corresponding to the new last step:

V (x(k+1), ũ) = V ∗(x(k))− x∗TN Px∗N− xT
0 Qx0−u∗T0 Ru∗0

+x(k+N +1)T Px(k+N +1)+ x∗TN Qx∗N + x∗TN KT RKx∗N
= V ∗(x(k))− x∗TN Px∗N− xT

0 Qx0−u∗T0 Ru∗0
+x∗TN (A+BK)T P(A+BK)x∗N + x∗TN (Q+KT RK)x∗N

< V ∗(x(k))

if
x∗TN [−P+(A+BK)T P(A+BK)+Q+KT RK]x∗N ≤ 0

(since Q > 0 and R > 0) which will be true if

−P+(A+BK)T P(A+BK)≤−Q−KT RK.
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The requirement that K should be stabilising comes from the fact that P > 0 can only
satisfy this inequality if A+BK has eigenvalues within the unit circle, since Q > 0 and
R > 0 (from linear systems stability theory).

Now the input u(k + 1) will be chosen by optimising the cost function (rather than by
using the input ũ), which will give the value function

V ∗(x(k+1))≤V (x(k+1), ũ)<V ∗(x(k))

if the required inequality holds. But V ∗(x(k)) ≥ 0, and V ∗(x(k)) = 0 only if x(k) = 0,
since P > 0,Q > 0,R > 0. Hence V ∗(x(k)) is a (discrete-time) Lyapunov function for the
closed-loop system, and closed-loop asymptotic stability of the origin is established.

The solutions to this part resembled the old joke about ‘playing all the right notes, but
not in the right order’. Correct bits of algebra appeared in most solutions, and the phrase
‘Lyapunov function’ was also present in most, but very few candidates followed the logic
of the proof correctly.

(d) Since A = 1.2 and B = 1, K is a scalar and |A+BK|< 1⇔ |1.2+K|< 1⇔−2.2 <

K <−0.2. We can choose any K in this range, and then determine an allowable range for
values of P.

For example, let K = −1.2, then A + BK = 0 so the inequality in part (c) becomes
−P <−5−2× (1.2)2 =−7.88 so any P > 7.88 will do, for example P = 8.

For other values of K, the inequality remains linear in P, eg: K =−1⇔ A+BK = 0.2 so
we need (0.2)2P−P <−5−2 =−7, hence P > 7/0.96 = 7.29.

Notes for marking part (d): Candidates can select any value of K in the stabilising range,
then determine the allowed range of P. To help with checking the solutions, Figs.3 and
4 show the minimum allowed P value for each K. Also Table (d) gives the minimum
for a range of K values. Some credit will be given for arguing that a large enough P
will always satisfy the inequality for some K (since |A+BK| < 1), but no credit will be
given for simply guessing a very large value of P without checking it — since there is a
minimum possible value (approx. 7.3), as can be seen from Fig.4.

K -2.1 -2.0 -1.9 -1.8 -1.7 -1.6 -1.5 -1.4 -1.3 -1.2
P 72.74 36.11 23.96 17.94 14.37 12.05 10.44 9.29 8.46 7.88
K -1.1 -1.0 -0.9 -0.8 -0.7 -0.6 -0.5 -0.4 -0.3
P 7.49 7.29 7.27 7.48 7.97 8.94 10.78 14.78 27.26

Table 1
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END OF PAPER
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