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1 The motion of an inkjet printer head is to be optimised. The printer head moves
accordingly to the law

xk+1 = xk + uk

where xk is the current position, xk+1 is the next position, and uk is the o�set.

(a) Let r be the desired target position and consider the finite horizon cost

J1 = (xT � r)2 +
T�1’
k=0

(xk � r)2 for T = 2 .

(i) Using dynamic programming, find the optimal cost J⇤1 , optimal trajectory
x⇤k , and optimal (unconstrained) input sequence uk , from the generic initial state
x⇤0 = x0. [30%]
System dynamics and cost function lead to the dynamic programming equation

V (x, k) = min
u2R

(x � r)
2 + V (x + u, k + 1) k = 0, 1

with final condition V (x, 2) = (x � r)
2. We have

V (x, 1) = min
u2R

(x � r)
2 + (x + u � r)

2 = (x � r)
2 for u

⇤ = r � x ,

V (x, 0) = min
u2R

(x � r)
2 + (x + u � r)

2 = (x � r)
2 for u

⇤ = r � x .

For the generic initial condition x0 the optimal cost is given by

J
⇤

1 = V (x0, 0) = (x0 � r)
2 .

The optimal trajectory is x
⇤

k+1 = x
⇤

k
+ (r � x

⇤

k
) = r , thus

x
⇤

0 = x0 , x
⇤

1 = r , x
⇤

2 = r .

The optimal input sequence is uk = r � x
⇤

k
, thus

u
⇤

0 = r � x0 , u
⇤

1 = 0 .

The printer head moves to the target r in one step, driven by the o�set
u0 = r � x0. No additional control action is then required (u⇤1 = 0).
Alternative solution: define the error e = x � r and derive the error dynamics
ek+1 = ek + uk . J1 becomes

Õ
T

k=0 e
2
k
=

Õ
T�1
k=0 e

2
k
+ e

2
T

. Then solve the
finite-horizon linear quadratic regulator problem.
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(ii) Explain why the modified cost

J2 = (xT � r)2 +
T�1’
k=0

�
(xk � r)2 + u2

k
�

for T = 2

gives a smoother optimal motion x⇤k than J1. Does J2 guarantee that x⇤T = r? [10%]
J2 penalizes large target errors (xk � r)

2 and large control o�sets u
2
k

at the
same time. The combination of these two objectives will result in a optimal
trajectory that moves in the direction of the target r driven by “small” o�sets
uk . In comparison to J1 the head will not necessarily move in one step to the
target but will use the whole horizon to get closer to the target through small
o�sets uk . Indeed, J2 does not guarantee x

⇤

2 = r .

(b) Consider the cost
J3 = (xT � r)2 for T = 2 .

Find the optimal input sequence constrained to �1  u⇤k  1, optimal trajectory x⇤k , and
optimal cost J⇤3 , for the initial condition x0 = 0 and target r = 2. [30%]
The dynamic programming equation for J3 reads

V (x, k) = min
�1u1

V (x + u, k + 1) k = 0, 1

with final condition V (x, 2) = (x � r)
2. To solve the problem, define the saturation

function

sat(z) :=

8>>><
>>>:

�1 if z  �1
z if |z |  1
1 if z � 1

z 2 R .

Then,

V (x, 1) = min
�1u1

(x + u � r)
2 = (x � r � sat(x � r))

2 for u
⇤ = �sat(x � r)

and
V (x, 0) = min

�1u1
(x + u � r � sat(x + u � r))

2 .

For r = 2 and x0 = 0 the optimal cost is

J
⇤

3 = V (0, 0) = min
�1u1

(u � 2 � sat(u � 2))2 = (1 � 2 � sat(1 � 2))2=0 for u
⇤=1

For x
⇤

0 = 0, the optimal input is thus u⇤0 = 1, which brings the state to x
⇤

1 = x
⇤

0 + u
⇤

1 =
1. Then, the next optimal input u⇤1 = �sat(x⇤1 � r) = 1 brings the state to the target
x
⇤

2 = 2.
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(c) A simple physical model of the printer head is given by the dynamics of a frictionless
mass of unit weight, with position p, and velocity v

€p(t) = v(t) €v(t) = u(t)

where u is the external driving force. An appropriate cost is

J4 =
π

1

0
(p(t) � r)2 + u(t)2 dt .

By formulating the problem of minimising this cost as a linear quadratic regulator (LQR)
problem, find the optimal (unconstrained) control u(t). [30%]
Define the error e = [ ep , ev ]T where ep = p � r and ev = v. Then, the error
dynamics read

€e = Ae + Bu A =

"
0 1
0 0

#
, B =

"
0
1

#

and the cost reads

J4 =
π

1

0
e(t)

T
Qe(t) + u(t)

2
dt Q =

"
1 0
0 0

#
,

This is a standard continuous-time infinite-horizon linear quadratic regulator
problem. Optimal costs and optimal control input are, respectively,

J
⇤

4 (e0) = e
T

0 Xe0 u
⇤
(t) = �B

T
Xe(t)

where X = X
T > 0 solves the Control Algebraic Riccati Equation

0 = Q + XA + A
T
X � XBB

T
X .

For instance,

0 =
"

1 0
0 0

#
+

"
X1 X3

X3 X2

# "
0 1
0 0

#
+

"
0 0
1 0

# "
X1 X3

X3 X2

#
�

"
X1 X3

X3 X2

# "
0 0
0 1

# "
X1 X3

X3 X2

#

=

"
1 0
0 0

#
+

"
0 X1

0 X3

#
+

"
0 0
X1 X3

#
�

"
X

2
3 X3X2

X3X2 X
2
2

#

which gives

X
2
3 = 1 ! X3 = 1

X
2
2 = 2X3 ! X2 =

p
2

X1 = X3X2 ! X1 =
p

2

Note that X3 = ±1 but the restriction to X3 = 1 guarantees feasibility of the second
equation. X2 = ±

p
2 but the restriction to X2 =

p
2 is needed for X > 0. Thus,

u
⇤
(t) = �B

T
Xe(t) = �

h
0 1

i " p
2 1

1
p

2

#
e(t) = �p(t) + r �

p
2v(t) .
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2 (a) Consider the first order system with transfer function

G(s) =
1

s + 1
.

(i) Describe the two methods of computing the H1 norm of a stable system, one
in the frequency domain and the other in the time domain / state space. [15%]
In the frequency domain, the H1 norm of G is given by

k G k1 = sup
!

�̄(G( j!))

where �̄ is the largest singular value of G( j!). The H1 norm of G can be
estimated numerically by gridding over frequency.
The H1 norm of G has also the interpretation of the the largest amplification
factor among L2,[0,1) signals

k G k1 = sup
u2L2,[0,1)

k y k2
k u k2

where ȳ(s) = G(s)ū(s)

This interpretation provides an alternative way to compute the H1 norm,
which uses the state-space realization fo G given by

€x = Ax + Bu , y = Cx .

It can be shown that kyk2
kuk2

 � if and only if the Riccati equation

A
T
X + XA + C

T
C +

1
�2 XBB

T
X = 0

has a positive solution X = X
T > 0. A bisection algorithm can then be used to

find the smallest � for which the Riccati equation has a solution.

(ii) Compute the H1 norm of G(s). [15%]
Using the first method,

sup
!

|G( j!)| = sup
!

�
G( j!)

⇤
G( j!)

�1/2
= sup

!

✓
1

!2 + 1

◆1/2
= 1 at ! = 0 .

Using the second method, for A = �1, B = 1, and C = 1 the Riccati equation

0 = �2X + 1 + X
2

�2 =) X =
�2

2

 
2 ±

s
4 �

4
�2

!

one of which is real and positive if � � 1.
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(b) Consider the associated generalised plant P1 with realisation

€x = �x + u + w1, y = x + w2, z =
h
x
u

i

where w1 and w2 represent additive noise on state x and measured output y, respectively.
z is the performance output and u is the control input.

(i) Define the H1 optimal control problem for the generalised plant P1. [10%]
Find a controller ȳc(s) = K(s)ūc(s) such that the closed loop of controller K

and generalized plant P1 given by u = yc , uc = y is stable and k z k2 � k w k2
for all w 2 L2,[0,1).
Using linear fractional transformations, the H1 control problem is about
finding a stabilizing controller K(s) such that k Fl(P1(s), K(s)) k1 � .

(ii) Derive state-feedback and output-feedback H1 controllers which guarantee
that the closed loop transfer function from w to z has H1 norm smaller than or equal
to 1. [40%]
The generalized plant can be written in the form

2666664

€x

z

y

3777775
=

26666666664

A

h
B1 0

i
B2"

C1
0

#
0

"
0
I

#

C2
h

0 I

i
0

37777777775

2666664

x

w

u

3777775
where A = �1, B1 = B2 = C1 = C2 = 1. The two identity matrices have
dimension 1 ⇥ 1. Controllability and observability conditions are all fulfilled.
Using the 4F3 datasheet, the state feedback controller is given by

yc = �B
T

2 Xx = �Xx

where X is the solution to

0 = XA + A
T
X + C

T

1 C1 � X(B2B
T

2 � ��2
B1B

T

1 )X

= �2X + 1 �

✓
1 �

1
�2

◆
X

2 = �2X + 1 =) X = 1/2 .

Note that A � B2B
T

2 X = �1.5 and A � B2B
T

2 X +
1
�2 B1B

T

1 X = �1 are both
stable.
From the 4F3 datasheet, the output feedback controller is given by
"
€xk

u

#
=

"
A + 1

�2 B1B
T

1 X � B2F � HC2 �H

F 0

# "
xk

y

#
=

"
�1 � H �H

F 0

# "
xk

y

#
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for F = B
T

2 X = 1/2 and H = YC
T

2 = Y , where Y satisfies

0 = B1B
T

1 + Y(A +
1
�2B1B

T

1 X)
T + (A +

1
�2B1B

T

1 X)Y � Y(C
T

2 C2 � ��2
F
T
F)Y

= 1 � Y �

✓
1 �

1
4�2

◆
Y

2 = 1 � Y �
3Y2

4
=) Y 2 {�2, 2/3} .

The second is a stabilizing solution, thus the controller reads"
€xk

u

#
=

"
�5/3 �2/3
1/2 0

# "
xk

y

#
.

(c) Consider the simplified generalised plant P2 with realisation

€x = �x + u + w, z = y = x

where w represents additive noise. Using linear matrix inequalities, describe how to find
the state-feedback H1 controller u = K x which minimises the H1 norm of the closed
loop transfer function from w to z. [20%]
The generalized plant has the form

€x = Ax + Bu + Bw , z = y = Cx for A = �1, B = C = 1 .

We look for a controller u = Kx that guarantees
d

dt
V  �z

2 + �2
w

2 for V = x
T
Xx

which is equivalent to solve the linear matrix inequality"
X(A + BK) + (A + BK)

T
X + C

T
C PB

B
T
P ��2

I

#
 0

For Y = X
�1 we get the equivalent formulation"

(A + BK)Y + Y(A + BK)
T + YC

T
CY B

B
T

��2
I

#
 0

and using Z = KY we get"
AY + BZ + YA

T + Z
T
B
T + YC

T
CY B

B
T

��2
I

#
 0 .

By Schur complement,
2666664

AY + BZ + YA
T + Z

T
B
T

B YC
T

B
T

��2
I 0

CY 0 �I

3777775
 0
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which is a linear matrix inequality in the unknowns Y = Y
T > 0, Z , and � > 0.

Minimizing over � returns Y and Z from which the minimizing H1 state-feedback
controller reads

u = Kx = ZY
�1

x .
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3 (a) List some advantages and disadvantages of predictive control, referring to one
or more di�erent application areas in your answer. [25%]
Advantages: takes constraints into account, particularly useful for operating near
constraints. Intutitive for system operators.
Disadvantages: needs an accurate model and full state feedback. Computationally
expensive online computation. Lack of transparency and guarantees.

(b) Write down the standard form of a quadratic programming (QP) optimisation
problem. [10%]
Given matrices Q > 0 and A and vectors c and b, a QP is the optimisation problem:

min
✓

1
2
✓TQ✓ + c

T ✓

subject to: A✓  b

(c) Consider a linear discrete time dynamical system

xk+1 = Axk + Buk

Predictive control is to be applied to this system with a receding horizon cost function

k+N�1’
i=k

⇣
xT

i+1Qxi+1 + uT
i Rui

⌘

and constraints
|uk |  U

for some U and all k. Assuming that the full state vector xk can be measured at each step,
show how the problem of choosing the control input at each step can be written as a QP
problem. [40%]
Since

x1 = Ax0 + Bu0

x2 = Ax1 + Bu1

etc, we can write
2666666664

x1
x2
...

xN

3777777775
,

2666666664

A

A
2

...

A
N

3777777775
x0 +

2666666664

B 0 · · · 0
AB B · · · 0
...

...
. . .

...

A
N�1

B A
N�2

B · · · B

3777777775

2666666664

u0
u1
...

uN�1

3777777775
.
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This can be written as x = �x0 + �u, where x0 , x = x(k) The cost function can be
rewritten as:

V (x, u) = x
T

0 Qx0 +

2666664

x1
x2
...

3777775

T 2666664

Q

Q

. . .

3777775

2666664

x1
x2
...

3777775
+

2666666664

u0
u1
...

uN�1

3777777775

T 2666666664

R

R

. . .

R

3777777775

2666666664

u0
u1
...

uN�1

3777777775
= x

T
Qx + xT⌦x + uT u.

Note that:

Q � 0 =) ⌦ � 0
R > 0 =)  > 0.

Putting this together:

V (x, u) = x
T
Qx + (�x + �u)T⌦(�x + �u) + uT u

= uT (�T⌦� +  )u + 2uT�T⌦�x + x
T
(Q +�T⌦�)x

=
1
2

uTGu + uTFx + x
T
(Q +�T⌦�)x

for

G , 2( + �T⌦�)
F , 2�T⌦�.

which is in the correct form, since x is a constant and the final term can be removed
for calculating the optimal u. We write the constraints as

"
�I

I

#
u  U

This is now in the standard form for a QP.

(d) Explain how, and why, the cost function and constraints should be modified to ensure
stability and feasibility. Equations are not required. [25%]

(i) design a stabilizing state f/b K .

(ii) Find (by solving a Ricatti equation) a P such that x
T

N
PXN is a control

Lyapunov function for the unconstrained sub-optimal f/b law u = Kx.
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(iii) add the terminal cost x
T

N
PXN to the cost function, so that the value

function of the unconstrained optimal control is a control lyapunov function
for the receding horizon control law.

(iv) Find a terminal constraint MN xN  bN which is both invariant for the
control law u = Kx and constraint admissible and add this constraint to the
QP. This ensures that feasible solutions remain feasible.
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4 Consider the following three control problems. For each problem choose a suitable
algorithm from the areas of Predictive Control, Reinforcement Learning or Optimal
Control (a di�erent algorithm for each problem). In each case describe the algorithm and
its application to the problem in detail, explaining why it is appropriate to the problem.
Included in your answers should be definitions of the terms value function, policy iteration,
value iteration and the action-value function, Q. You may make reasonable assumptions.

(a) Control Problem 1: Determining the minimum fuel required, and the corresponding
throttle settings to land a spacecraft on the surface of the moon from orbit. An accurate
model of the spacecraft is available. You may assume that the spacecraft moves in one
orbital plane (i.e. that the desired landing point is directly below the spacecraft at one point
in its orbit) and that the orientation of the spacecraft can be controlled instantaneously. [33%]

The state-space is of low dimension, and the problem is deterministic, so it is feasible
to solve this directly by dynamic programming. The value function V (s) would
be the minimum fuel required to land the spacecraft from state s (1 if it’s not
possible). Choose a suitable time step, let V (slanded) = 0 and work backwards. A
complete answer would include a description of both value and policy iteration and an
argument about which is to be preferred here (which would depend on assumptions
that the student makes)

(b) Control Problem 2: Maintaining straight and level flight for a damaged aircraft,
where several control surfaces are damaged or unavailable but an accurate linearised
mathematical model is available for both the aircraft and the available controls and it is
known which controls are not available. [33%]

Predictive control is suitable here, and a reasonable alternative to designing
individual controllers for each failure condition. A complete answer would include
a definition of the value function for the finite horizon problem and a description of
the receding horizon formulation. Constraints should be placed on the deviation of
the aircraft from straight and level flight and on the magnitude of the control inputs.

(c) Control Problem 3: An o�ine study into the possibility of controlling a heavily
damaged aircraft, including being able to execute turns, where several control surfaces
and one or more engines are unavailable, and parts of the wing are missing. An accurate
simulation environment is available, incorporating important nonlinear characteristics
from a detailed fluid dynamics model, and it is expected that an unconventional nonlinear
control strategy would be required. [34%]

Some form of RL would be appropriate here, with Q-learning being the expected
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answer. The action-value function should be defined. The reward should be a
combination of a reward for landing safely plus a reward for maintaining control of
the aircraft. The state-space is of too high a dimension for a tabular approach, so
some way of approximating Q is required, eg a deep neural net.

END OF PAPER
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Assessor’s report, Module 4F3

Q1: Linear quadratic control
Popular question, good answers by most of the students. Part A: most of

the students answered correctly but some adopted the LQR approach, which
is not correct (not well posed, does not meet the condition R¿0). Part B:
well addressed by most of the students. Part C: good average. Main issues
were about LQR formulation. A few blank answers.

Q2: H∞ norm and control
Popular question. Part A: good answers in general. A few students

did not remember the approach based on Riccati’s equation. Part B: well
addressed by most students. Part C: just a few students did it correctly.

Q3: Predictive Control
Popular question on model predictive control, attempted by all candi-

dates. Routine and very well answered on the whole.

Q4: Reinforcement Learning
This question included parts on the new material in the course, rein-

forcement learning. Attempted by approximately half the candidates. The
average mark was OK, but this is because there were a lot of mediocre an-
swers. The question was descriptive, but few candidates took seriously the
requirement for detailed descriptions of the algorithms chosen.
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