
4F5 Advanced Communications and Coding

Engineering Tripos 2014/15 – Solutions

Question 1

(a) i) The number of length fifty sequences with two or fewer ones is(
50

0

)
+

(
50

1

)
+

(
50

2

)
= 1276.

The number of bits needed to provide codewords for 1276 sequences = dlog2 1276e = 11 bits. [15%]

ii) The required probability is 1−
∑2

k=0

(
50
k

)
(0.01)k(0.99)50−k = 0.0138 [15%]

iii) The minimum expected number of bits per source symbol is the entropy of the source, which
is H2(0.99) = 0.0808 bits. [5%]

iv) Fix ε > 0 be very small. Consider the set of ε-typical length n sequences, given by

Aε,n =
{
xn ∈ {0, 1}n : 2−n(H(X)+ε) ≤ P (xn) ≤ 2−n(H(X)−ε)

}
. (1)

Here H(X) is the source entropy, equal to 0.0808 bits. For all sequences xn ∈ Anε , assign a
codeword of length dn(H(X) + ε)e, where H(X) = 0.0808. Append a flag bit, say 0, to each
of these codewords. For the remaining codewords, assign codewords of length n (by taking the
entire source sequence to be the codeword). Append a flag bit of 1 to each of these.

For any fixed ε, the probability of observing a sequence from Anε goes to 1 as n → ∞. This
implies that the average number of bits per source symbol is H(X) + ε′, where ε′ is very small.
(See lecture notes for the detailed calculation, which is not required here.) [20%]

(b) i) The probability of a given sequence (x1, x2, . . . , xn) with k “a” symbols, j “b” symbols and
n− k − j “c” symbols (for 0 ≤ j ≤ n− k) is

(1/2)k · (1/4)j · (1/4)n−k−j = (1/2)k · (1/4)n−k,

i.e., it does not depend on j. [5%]

ii) Denoting the source random variable as X, we find that H(X) = 1.5 bits. Using the expression
for P (xn) from (i) in the definition of Aε,n in (1), we see that

Aε,n =
{
xn ∈ {0, 1}n : 2−n(1.5+ε) ≤ (1/2)k(x

n)(1/4)n−k(x
n) ≤ 2−n(1.5−ε)

}
,

where k(xn) denotes the number of “a” symbols in the sequence xn. Plugging in n = 20 and
ε = 0.05, we have [20%]

Aε,n =
{
xn ∈ {0, 1}n : 2−31 ≤ 2−(40−k(x

n)) ≤ 2−29
}

= {xn ∈ {0, 1}n : −31 ≤ −40 + k(xn) ≤ −29}

= {xn ∈ {0, 1}n : 9 ≤ k(xn) ≤ 11} .
(2)

Therefore A0.05,20 consists of length 20 sequences with 9, 10, or 11 a symbols.
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iii) The number of length 20 sequences with k a’s is
(
20
k

)
220−k. (Choose k positions for the a′s;

each of the remaining (20 − k) positions can have either b or c.) Therefore the size of the set
A0.05,20 is

|A0.05,20| =
(

20

9

)
211 +

(
20

10

)
210 +

(
20

11

)
29.

From the lecture notes, we know that |Aε,n| ≤ 2n(H(X)+ε). Hence, using ε = 0.05 we obtain [20%]

|A0.05,20| =
(

20

9

)
211 +

(
20

10

)
210 +

(
20

11

)
29 ≤ 220(1.5+0.05).
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Question 2

(a) i) As all the symbols are equally likely, the optimal MAP detector reduces to the minimum
distance rule: The decision regions are [10%]

X̂ =


−3A if Y ≤ −2A
−A if − 2A < Y ≤ 0
A if 0 < Y ≤ 2A
3A if Y > 2A

ii) The probability of error is

P (X̂ 6= X) = P (X = −3A)P (X̂ 6= −3A|X = −3A) + P (X = A)P (X̂ 6= A|X = A)

+ P (X = A)P (X̂ 6= A|X = A) + P (X = 3A)P (X̂ 6= 3A|X = 3A).
(3)

For X = −3A, we have

P (X̂ 6= −3A | X = −3A) = P (Y > −2A | X = −3A)

= P ({−3A+N > −2A} | X = −3A) = P ({N > A}) = Q
(√

2A2

N0

)
.

(4)

For X = −A, we have [10%]

P (X̂ 6= −A | X = −A) = P ({Y < −2A} ∪ {Y > 0} | X = −A)

= P ({N < −A} ∪ {N > A}) = 2Q
(√

2A2

N0

)
.

(5)

By symmetry, we have P (X̂ 6= −3A|X = −3A) = P (X̂ 6= 3A|X = 3A), and P (X̂ 6=
−A|X = −A) = P (X̂ 6= A|X = A). Substituting in (3) and noting that all the symbols are

equally likely, we obtain P (X̂ 6= X) = 3
2Q
(√

2A2

N0

)
.

iii) Now the optimal MAP detector is no longer the minimum-distance rule. For each y, we have
to determine:

X̂(y) = arg max
X∈{−3A,−A,A,3A}

P (X)f(y|X)

Since symbol −A has higher probability than −3A, we expect the decision boundary between
them to be to the left of −2A. Let us verify this. The optimal detection rule to decide
between −3A and −A is

X̂ = arg max
x∈{−3A,−A}

P (Y = y|X = x) P (X = x) = arg max
x∈{−3A,−A}

e−(y−x)
2/N0P (X = x) (6)

For x = −3A, the test statistic in (6) is 1
6e
−(y+3A)2/N0 . For x = −A, the test statistic is

1
3e
−(y+A)2/N0 . Therefore, X̂ = −3A when

1

6
e−(y+3A)2/N0 ≥ 1

3
e−(y+A)

2/N0 ⇔ − ln 6− (y + 3A)2/N0 ≥ − ln 3− (y +A)2/N0

⇔ y ≤ −2A− N0 ln 2

4A
.

(7)

By symmetry, the decision boundary between A and 3A is now 2A+ N0 ln 2
4A . Since −A and

A have equal probability, their decision boundary will remain at zero. Therefore: [25%]

X̂ =


−3A if Y ≤ −2A− N0 ln 2

4A

−A if − 2A− N0 ln 2
4A < Y ≤ 0

A if 0 < Y ≤ 2A+ N0 ln 2
4A

3A if Y > 2A+ N0 ln 2
4A

3



Assessor’s comment: Most students had the right idea that the decision bound-
aries would shift closer to the symbols with lower probability, but did not apply
the MAP rule correctly. Some guessed (incorrectly) that the shift would be
proportional to the symbol probabilities.

iv) To find P (X̂ 6= X) using the general formula (3), we calculate P (X̂ 6= −3A | X = −3A)
and P (X̂ 6= −A | X = −A) as follows.

P (X̂ 6= −3A | X = −3A) = P (N > A− N0 ln 2

4A
) = Q

(√
2(A−N0 ln 2

4A
)2

N0

)
, (8)

P (X̂ 6= −A | X = −A) = P (N < A+
N0 ln 2

4A
) + P (N > A) = Q

(√
2(A+

N0 ln 2
4A

)2

N0

)
+Q

(√
2A2

N0

)
.

(9)

Since P (X̂ 6= −3A|X = −3A) = P (X̂ 6= 3A|X = 3A) and P (X̂ 6= −A|X = −A) = P (X̂ 6=
A|X = A), substituting the above in (3) gives [20%]

P (X̂ 6= X) =
1

3
Q

(√
2(A−N0 ln 2

4A
)2

N0

)
+

2

3

[
Q

(√
2(A+

N0 ln 2
4A

)2

N0

)
+Q

(√
2A2

N0

)]
.

(b) i) Multiplying the output by h∗/|h|, we obtain

Ȳ = |h|X + N̄ (10)

where N̄ ∼ CN (0, N0). the effective signal is now |h|X, which can one of four (real) values
{−|h|3A,−|h|A, |h|A, 3|h|A}. Since the effective signal is real-valued, we need only the real
part of Ȳ for detection. Therefore, from (10), we have [15%]

<(Ȳ ) = |h|X + <(N̄) (11)

where <(N̄) ∼ N (0, N0
2 ). This is identical to the detection problem in part (a).(i) and (ii),

except that the symbols values are now multiplied by |h|. Therefore the error probability
conditioned on h is

Pe|h =
3

2
Q
(√

2(|h|A)2
N0

)
.

ii) Using the Q-approximation, Pe|h ≈ 3
4e
−(|h|A)2

N0 . The probability of error averaged over all
realisations of h is [10%]

Pe =

∫ ∞
0

3

4
e
−xA2

N0
x
e−x dx =

3

4

(
1

1 + A2

N0

)
. (12)

iii) From part (a).(ii), the probability of error for the AWGN channel is 3
2Q
(√

2A2

N0

)
≈ 3

4e
−A2/N0 ,

which decreases exponentially with A2/N0. The probability of error for the fading channel is
1

1+A2

N0

, i.e., decays polynomially with A2/N0. The significantly slower decay of error for the

fading channel is due to the probability of the channel being in deep fade, i.e., the channel
strength |h|2 � (A2/N0)

−1. For such an h, (12) implies that Pe|h is close to 3/4 — very
high! [10%]
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Question 3

(a) The first parity-check equation has only one erasure, allowing us to resolve the 7th symbol to
a 1. The sixth parity-check equation also contains a single erasure, allowing us to resolve the
third symbol to a zero. The third parity-check equation, which initially contained two erasures,
now only contains one after resolving the third symbol, allowing us to resolve the 9th symbol
to a zero. The fifth and second parity- check equation now allow us to resolve the 2nd and 5th
symbol in turn to 1 and 0, respectively, yielding the solution [20%]

x = [ 0 1 0 1 0 0 1 1 0 ].

(b) i) The rate is [10%]

R = 1−
∫ 1
0 ρ(x)dx∫ 1
0 λ(x)

= 1−
[
1
6x

6
]1
0[

.5
3 x

3 + .3
5 x

5 + .2
6 x

6
]1
0

= 1− 1/6

5/30 + 3/50 + 2/60
=

14

39
= 0.359

ii) If the code length is N = 3900 and we know that the rate is R = K/N = K/3900 = 14/39,
we conclude that K = 1400. Hence, the parity-check matrix has N −K = 2500 rows and 3900
columns.

To find the number of ones in the parity check matrix, there are two ways to proceed. One
is to note that 100 % of edges are connected to degree-6 constraint nodes because ρ(x) = x5.
Equivalently, all constraint nodes have degree 6, hence there are 6 × 2500 = 15000 ones in the
parity-check matrix. [10%]

The other way is to calculate the average degree of a variable node using the formula (given in the

data sheet): d̄` =
(∫ 1

0 λ(x)dx
)−1

= 50
13 , and then compute the number of ones as N× d̄` = 15000.

Assessor’s comment: Most students made an error in calculating the number of ones
in the parity check matrix, by using the edge perspective polynomial λ(x) directly,
instead of using it to first find the average variable node degree.

(c) (A calculator is needed to answer the first part of this question.) For the sum-product algorithm,

Lspo (3) = 2 tanh−1
∏
i 6=3

tanh
Li
2

= 2 tanh−1
[
tanh

(
3.2

2

)
· tanh

(
−0.6

2

)
· tanh

(
4.4

2

)
· tanh

(
2.8

2

)
· tanh

(
5.7

2

)]
= −0.47

while for the min-sum algorithm,{
sign(Lmso (3)) =

∏
i 6=3 sign(Li) = −1

|Lmso (3)| = mini 6=3 |Li| = 0.6

hence Lmso (3) = −0.6. [25%]

(d) i) The following graph shows both densities and may be helpful (but not essential) for visual-
ising the answer:
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y

fY |X(y|0)

fY |X(y|1)

1

1/2

1 20 4

We divide the interval [0, 4] into three intervals [0, 1], [1, 2] and [2, 4] and consider each
separately:

For y ∈ [0, 1], we have {
fY |X(y|0) = g1(y) = y

fY |X(y|1) = g2(y) = 1
4y

so the log-likelihood ratio is

L(y) = log
y
1
4y

= log 4.

For y ∈ [1, 2], we have {
fY |X(y|0) = g1(y) = 2− y
fY |X(y|1) = g2(y) = 1

4y

hence

L(y) = log
2− y
1
4y

= log 4 + log( 2y − 1).

For y ∈ [2, 4], we have [25%]{
fY |X(y|0) = g1(y) = 0

fY |X(y|1) = g2(y) = 1− 1
4y

hence
L(y) = −∞.

ii) The 4th received symbol was definitely a 1 since fY |X(2.2|0) = 0, and since it is a repetition
code, the transmitted codeword is [1, 1, 1, 1, 1]. [10%]
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Question 4

(a) i) The transition matrix is:

Y
PY |X 0 ε 1

X
0 (1− p)(1− α) α p(1− α)
1 p(1− α) α (1− p)(1− α)

[15%]

ii) The mutual information for the cascade channel is

I(X;Y ) = H(Y )−H(Y |X) = H(Y )−
∑

x∈{0,1}

P (x)H(Y |X = x). (13)

Next, we find that

H(Y |X = 0) = H(Y |X = 1) = H( {(1− p)(1− α), α, p(1− α)} ),

where H({p1, p2, p3}) denotes the entropy of the pmf {p1, p2, p3}. Therefore,

I(X;Y ) = H(Y )−H( {(1− p)(1− α), α, p(1− α)} ). (14)

Since the channel is symmetric in inputs 0 and 1, the mutual information is maximised by
choosing P (X = 0) = P (X = 1) = 1

2 . (This can also be explicitly checked by using an arbitrary
input distribution of the form {x, 1− x} and optimising.) [25%]

With P (X = 0) = P (X = 1) = 1
2 , we get P (Y = 1) = P (Y = 0) = 1−α

2 , P (Y = ε) = α.
Therefore, from (14), the capacity is

C = max
PX

I(X;Y ) = H

({
1− α

2
, α,

1− α
2

})
−H ({(1− p)(1− α), α, p(1− α)}) ,

which after simplification yields C = (1 − α)(1 − H2(p)). Note that this is the product of the
capacities of the two channels in the cascade. (In general, the capacity of the cascade channel
may not be the product of the individual capacities.)

(b) i)
20 = 1, 21 = 2, 22 = 4, 23 = 3, 24 = 1

and
30 = 1, 31 = 3, 32 = 4, 33 = 2, 34 = 1

so the multiplicative order of 2 and 3 is 4.

There cannot be an element of multiplicative order 3 because the order of the multiplicative
group is 4 and, according the Lagrange’s theorem, the order of any element in the group
must divide 4. [10%]

ii) Take two rows of the Fourier matrix with primitive element α = 2 or α = 3. Two possible
answers depending on whether 2 or 3 is used as a primitive element (the two solutions are
denoted (*) and (**) in the rest of the crib): [10%]

(∗) : H =

[
1 1 1 1
1 2 4 3

]
or (∗∗) : H =

[
1 1 1 1
1 3 4 2

]
iii) The code is of dimension 2. It has 52 = 25 codewords. [10%]
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iv) Any elementary row operations on a parity-check matrix yields another parity-check matrix
for the same code. For example, we can obtain an equivalent parity-check matrix by replacing
the second row by the sum of the two rows, i.e., [10%]

(∗) : H′ =

[
1 1 1 1
2 3 0 4

]
or (∗∗) : H′ =

[
1 1 1 1
2 4 0 3

]
(note that this answer is not unique and any equivalent parity-check matrix to the H speficied
in quesion (b) is a valid answer here.)

v) We multiply the sequence with the parity-check matrix to check if it is a codeword,

(∗) : [1, 2, 4, 3]

[
1 1 1 1
1 2 4 3

]T
= [0, 0],

yes it is a codeword, or

(∗∗) : [1, 2, 4, 3]

[
1 1 1 1
1 3 4 2

]T
= [0, 1],

no it is not a codeword (note that the correct answer varies here according to the path
chosen in part (ii)). [5%]

vi) Here the student should notice that there were two possible choices in part (ii) and state
the remaining solution, i.e. (**) if (*) was chosen in (b), or (*) if (**) was chosen in (b).

Assessor’s comment: Some students gave a parity check matrix consisting of the
first 3 rows of the DFT matrix. This is also ok, since such a code will have lower
dimension k = 1, but will still correct one error, since it has dmin = 4. [15%]
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