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EGT3
ENGINEERING TRIPOS PART IIB

Wednesday 20 April 2016 9.30 to 11

Module 4F7

DIGITAL FILTERS AND SPECTRUM ESTIMATION - WORKED
SOLUTIONS

Answer not more than three questions.

All questions carry the same number of marks.

The approximate percentage of marks allocated to each part of a question is
indicated in the right margin.

Write your candidate number not your name on the cover sheet.

STATIONERY REQUIREMENTS
Single-sided script paper

SPECIAL REQUIREMENTS TO BE SUPPLIED FOR THIS EXAM
CUED approved calculator allowed

10 minutes reading time is allowed for this paper.

You may not start to read the questions printed on the subsequent
pages of this question paper until instructed to do so.
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1 Examiner’s comment: A popular and straightforward question, well-answered by
most candidates.

(a) Describe briefly the principles behind the nonparametric power spectral estimation
method. Your discussion should include the correlogram, periodogram and possible
improvement strategies.

[30%]

Solution:

[This is a little more detailed than required in the exam]

•The basic principle is generally to estimate the autocorrelation function RXX and
then take Fourier transforms - Correlogram and Periodogram methods.

•Further improvements can be made if we perform various types of smoothing or
averaging - Bartlett, Blackman-Tukey, Welch methods

Correlogram and Periodogram Estimates

•These classical techniques are based on the principle of obtaining estimates of the
auto-correlation function RXX of the random process and then taking the Discrete
time Fourier transform:

SX (e
jωT ) =

∞
∑

k=−∞
RXX [k]e

− jkωT

•If the process is WSS and ergodic, we can estimate RXX assuming a correlation
ergodic signal:

RXX [k]≈
1

2N +1

+N

∑
−N

xnxn+k

•There are several ways to proceed when the number of data points is finite; we
consider the consequences of two of these.
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Assume that N data points are available from a single sample function from a WSS
process; then two possible estimates of the autocorrelation function are:

(i) Sample autocorrelation function (biased estimate):

R̂XX [k] =
1
N

N−1−k

∑
n=0

xn xn+k 0 ≤ k < N (1)

(ii) Sample autocorrelation function (unbiased estimate):

R̂XX [k] =
1

N − k

N−1−k

∑
n=0

xn xn+k 0 ≤ k < N (2)

•Intuitively, 1. is biased since we divide the summation by N rather than N − k, the
number of terms in the summation.

•Note that the form of the upper limit ensures that only samples xn, 0 ≤ n ≤ N−1
appear in the summations.

•Note that the autocorrelation is an even function so that estimates for negative k are
given by:

R̂XX [−k] = R̂XX [k]

•In fact the biased form has better properties (see later) and is generally used for
spectrum estimation.

•Now, assume that RXX [k] = 0 for |k|> L, where L is some chosen constant, typically
with L << N.

•The Correlogram estimate for the power spectrum is obtained by taking the DTFT
of the sample autocorrelation function, R̂XX [k]:

ŜX (e
jωT ) =

L

∑
k=−L

R̂XX [k]e
− jkωT , L < N

•Typically used with L << N.
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•However, if the maximum correlation lag is taken to be:

L = N −1

then the resulting estimate is:

ŜX (e
jωT ) =

N−1

∑
k=−(N−1)

R̂XX [k]e
− jkωT (3)

•When the biased form (2.) is used for R̂XX , this can be rewritten in terms of the
DTFT of {x0,x1, ...,xN−1}:

ŜX (e
jωT ) =

1
N
|Xw(e jωT )|2

Xw(e jωT ) =
N−1

∑
n=0

xn e− jnωT
(4)

which is known as the Periodogram.

Improving the Spectral Estimate

•The periodogram is a useful tool, but its variability is very high.

•We will consider several common methods to improve the performance, based on
averaging, smoothing and windowing.

The Bartlett Procedure

•Earlier in this section it was observed that

SX (ω) = lim
D→∞

1
2D

E{|XD(ω)|2}

•It would seem natural to try and improve the spectrum estimate by performing some
averaging in order to mimic the ensemble average above.

•Let the data sequence xn be of length Ns = K N and segment this sequence into K
subsequences of length N:

x(k)n = xn+k N 0 ≤ n ≤ N −1 0 ≤ k ≤ K −1

•Calculate the periodogram for each frame, denoted by Ŝ(k)X (e jωT ), k =

0,1,2, ...,K −1.

•The Bartlett estimate is then given by:

ŜB
X (e

jωT ) =
1
K

K−1

∑
k=0

Ŝ(k)X (e jωT ) (5)
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•If the data subsequences are uncorrelated with one another the Bartlett procedure
reduces the variance by a factor of K, by less if they are correlated.

•Bartlett allows a trade-off between frequency resolution (∝ N) and variance of the
estimate (∝ 1/K).

•Reduction in variance is at the expense of requiring more data for the same
resolution.

The Blackman-Tukey Procedure

•The Blackman-Tukey method applies a window function of length 2L+ 1 to the
estimated autocorrelation function:

ŜBT
X (e jωT ) =

L

∑
−L

wlR̂XX [l]exp(− jωT ) (6)

where L < N and wl is any suitable window function, e.g. Hamming, Hanning,
Bartlett,...

•We have already analysed a similar case, see page 67. It is clear that the resulting
spectrum can be written as a frequency domain convolution:

ŜBT
X (e jωT ) =

1
2π

W (e jωt)∗ ŜX (e
jωt)

where W (.) is the DTFT of the window function and ŜX (.) is the Periodogram.

•The B-T method can reduce the variance of the periodogram estimate at the expense
of some frequency resolution. A special case is the correlogram considered earlier

The Welch Procedure

•The Welch procedure performs averaging over frames as in the Bartlett method

•However, the periodograms are modified to incorporate a window function on the
data:

Ŝ
′(k)(e jωT ) =

1
N

∣∣∣∣∣N−1

∑
n=0

wn x(k)n e− jωnT

∣∣∣∣∣
2

with 1/N ∑N−1
n=0 w2

n = 1.

•As for the Bartlett method, averaging is then performed over K frames:

ŜW
X (e jωT ) =

1
K

K−1

∑
k=0

Ŝ
′(k)
X (e jωT ) (7)
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•The expected value of this spectral estimate can be shown to be:

E[ŜW
X (e jωT )] =

1
2π

V (e jωT )∗SX (e
jωT )

where W (e jωT ) is the DTFT of the window and V (e jωT ) = 1
N |W (e jωT )|2.

•When the segments are non-overlapping the variance is approximately that of the
Bartlett estimate.

(b) It is proposed to estimate the power spectrum of a wide-sense stationary random
process by first multiplying the data xn with a window function wn having length N, i.e.
wn = 0 for n < 0 and n > N −1, so that

xw
n = wnxn .

The autocorrelation function is then estimated as

R̂XX [|k|] =


1
N ∑N−1

n=0 xw
n xw

n+|k|, k =−N +1, ...−1,0,1, ...,N −1 ,

0, otherwise.

(i) Show that the expected value of the autocorrelation function estimate is given
by

E[R̂XX [|k|]] = RXX [k]
1
N

N−1−|k|
∑

n=0
wnwn+|k|

where RXX [k] is the true autocorrelation function for the process, and hence and
hence explain whether this estimator is biased or not.. [30%]
Solution: For positive k:

E[R̂XX [k]] = E[
1
N

N−1

∑
n=0

xw
n xw

n+k]

= E[
1
N

N−1−k

∑
n=0

(wnxn)(wn+kxn+k)]

=
1
N

N−1−k

∑
n=0

wnwn+kE[xn xn+k]

=
1
N

N−1−k

∑
n=0

wnwn+kRXX [k]

= RXX [k]
1
N

N−1−k

∑
n=0

(wnwn+k)

Then obtain an expression for negative k by substituting |k| for k.
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It is biased in general for k < N, since the window correlation summation will not
be constant with k, and of course biased for larger k, since we set those estimates to
zero.

(ii) The power spectrum estimate ŜX (e jθ ) is obtained by taking the DTFT of the
estimated autocorrelation function R̂XX [k].
Show that the expected value of the corresponding power spectrum estimate is:

E[ŜX (e
jθ )] =

1
2πN

SX (e
jθ )∗ |W (e jθ )|2

where SX (e jθ ) is the true power spectrum of the random process, W (e jθ ) is the
DTFT of the window function wn, and ∗ denotes the convolution operator. [25%]
Solution:
We have from lectures on the periodogram that

E[ŜX (e
jωT )] = E[DT FT{R̂XX [k]}] = DT FT{E[R̂XX [k]]}

Then, note that
N−1−k

∑
n=0

(wnwn+k) = {wn}∗{w−n}

whose DTFT is:

W (e jωT )W∗(e jωT ) = |W (e jωT )|2

But, this term is multiplied (in time) with RXX [k]. Hence overall the DTFT is:

E[ŜX (e
jωT )] =

1
2πN

SX (e
jωT )∗ |W (e jωT )|2,

as required

(iii) Explain the advantages and disadvatages of this method for power spectral
estimation in comparison with the standard periodogram estimator. [15%]
Solution:
The method convolves the periodogram with the window function magnitude
squared. With appropriate choice of window this will smooth out the randomness in
the periodogram without losing too much spectral detail. The estimate is guaranteed
positive-valued, which is good, though of course there is a trade-off in some loss of
spectral detail through the convolution.
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2 Examiner’s comment: Attempted by all candidates with good results in general.
Some confusion about how to handle the less standard part (b) for some candidates. Many
expressed h0 and h1 in terms of the autocorrelation function, which gained some, but not
full, credit. This route sometimes led to a correct answer to part (ii).

(a) Describe the autoregressive moving average (ARMA) class of signal model,
explaining how to obtain the power spectrum of an ARMA process and any advantages
of such an approach compared to nonparametric approaches. [25%]

Answer: Bookwork, taken from:

ARMA Models A quite general representation is the autoregressive moving-average
(ARMA) model:

•The ARMA(P,Q) model difference equation representation is:

xn =−
P

∑
p=1

ap xn−p +
Q

∑
q=0

bq wn−q (8)

where:

ap are the AR parameters,

bq are the MA parameters

and {Wn} is a zero-mean stationary white noise process with unit variance, σ2
w = 1.

•Clearly the ARMA model is a pole-zero IIR filter-based model with transfer
function

H(z) =
B(z)
A(z)

where:

A(z) = 1+
P

∑
p=1

apz−p, B(z) =
Q

∑
q=0

bqz−q

•Unless otherwise stated we will always assume that the filter is stable, i.e. the poles
(solutions of A(z) = 0) all lie within the unit circle (we say in this case that A(z)
is minimum phase). Otherwise the autocorrelation function is undefined and the
process is technically non-stationary.

•Hence the power spectrum of the ARMA process is:

SX (e
jωT ) =

|B(e jωT )|2

|A(e jωT )|2
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Thus, estimate the parameters a and b from the data, then plug into spectral density
formula.

The ARMA model is quite a flexible and general way to model a stationary random
process:

•The poles model well the peaks in the spectrum (sharper peaks implies poles closer
to the unit circle)

•The zeros model troughs in the spectrum

•Complex spectra can be approximated well by large model orders P and Q

Can give improved variance of estimation; however, may be highly biased and inaccurate
when an ARMA model is inappropriate for the data. Also, quite expensive to compute
parameters accurately.

(b) An ARMA(P,Q) model has the following digital filtering equation:

xn =−
P

∑
p=1

ap xn−p +
Q

∑
q=0

bq wn−q .

where {wn} is zero mean white noise with unity variance, and the filter is assumed stable.

(i) Explain carefully why it is not necessary to include a variance parameter (not
necessarily equal to unity) for the white noise process {wn} in the above ARMA
formulation. [10%]
Answer:
This is not necessary, since any scaling of the noise process by a standard deviation
parameter can be absorbed into the values of the b coefficients (not the as since we
have to have ‘a0’ equal to 1.)

(ii) Show that the ARMA model autocorrelation function obeys the following
difference equation:

RXX [r]+
P

∑
p=1

ap RXX [r− p] =
Q

∑
q=0

bqhq−r

where hr is a particular function of the ARMA systems that should be carefully
defined. Explain why the term ∑Q

q=0 bqhq−r must always be zero for r > Q.

[30%]

Answer:

Autocorrelation function for ARMA Model The autocorrelation function RXX [r] for the
output xn of the ARMA model is:

RXX [r] = E[xnxn+r]
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Substituting for xn+r from equation 8 gives:

RXX [r] = E

[
xn

{
−

P

∑
p=1

ap xn+r−p +
Q

∑
q=0

bq wn+r−q

}]

=−
P

∑
p=1

ap E[xnxn+r−p]+
Q

∑
q=0

bq E[xnwn+r−q]

The white noise process {Wn} is wide-sense stationary so that {Xn} is also wide-sense
stationary provided the the ARMA filter is stable. Therefore:

RXX [r] =−
P

∑
p=1

ap RXX [r− p]+
Q

∑
q=0

bq RXW [r−q] (9)

Note that the auto-correlation and cross-correlation satisfy the same ARMA system
difference equation as xn and wn.

The cross-correlation term RXW [.] can be obtained as follows. Let the system impulse
response be hn, then:

xn =
∞
∑

m=∞
hm wn−m

Therefore,

E[xn wn+k] = E[wn+k

∞
∑

m=∞
hm wn−m]

RXW [k] =
∞
∑

m=−∞
hm E[wn+k wn−m]

Now the noise is a zero-mean stationary white process so that:

E[wn+k wn−m] =

σ2
W if m =−k

0 otherwise

and σ2
W = 1 without loss of generality. Hence,

RXW [k] = h−k
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Substituting this expression for RXW [k] into equation 9 gives the Yule-Walker Equation
for an ARMA process,

RXX [r] =−
P

∑
p=1

ap RXX [r− p]+
Q

∑
q=0

bq hq−r (10)

Since the system is causal, equation 10 may be rewritten as:

RXX [r] =−
P

∑
p=1

ap RXX [r− p]+ cr (11)

where:

cr =

∑Q
q=r bq hq−r if r ≤ Q

0 if r > Q
(12)

(c) An ARMA(1,1) model is to be estimated from autocorrelation data.

(i) Express the first two terms h0 and h1 from the ARMA(1,1) model in terms of
the coeefficients {ap} and {bq}. [10%]
Answer:
hn is the impulse response of the filter. Hence we may drive the filter directly with
a digital impulse δn to determine h0 and h1:

h0 =−a1 h−1 +b0δ0 +b1δ−1 = 0+b0 +0 = b0

since δ−1 and h−1 are zero (causal system).

h1 =−a1 h0 +b0δ1 +b1δ0 =−a1b0 +b1

since δ1 = 0.

(ii) Some values of the autocorrelation function for an ARMA(1,1) process are
given by

RXX [0] = 1, RXX [1] =−0.4, RXX [2] = 0.2, RXX [3] =−0.1 .

Use the result of part (b)(ii) and your expressions for h0 and h1 to determine the
coefficients of the corresponding ARMA(1,1) model. You are given that b0 equals
2. [20%]

Answer:
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Write out the autocorrelation equations for r = 0,1,2,3:

RXX [0] =−a1RX X [−1]+ c0

RXX [1] =−a1RX X [0]+ c1

RXX [2] =−a1RX X [1]

RXX [3] =−a1RX X [2]

since c2 and c3 are zero. Solving the r = 2 or 3 case, we get:

a1 = 0.5

Then, solving for b, we first calculate c0 and c1:

c0 = b0h0 +b1h1 = b2
0 +b1(−a1b0 +b1)

c1 = b1h0 = b0b1

But we know a1, so
c0 = 1+0.5∗−0.4 = 0.8

, since RXX [−1] = RXX [1]. and

c1 =−0.4+0.5∗1 = 0.1

Thus we have
b0b1 = 0.1, b2

0 +b1(−a1b0 +b1) = 0.8

With the given b0 = 2 we obtain from just the first expression that b1 = 0.05.
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3 Examiner’s comment: Popular question, with high marks in general

(a) In the standard adaptive filtering problem we have an input signal {u(n)}∞
n=0, a

reference signal {d(n)}∞
n=0, and a Finite Impulse Response (FIR) filter {hm}M−1

m=0 of
length M. Describe the setup of the general adaptive adaptive filter, including the error
criterion/cost function vector notation, and illustrate it by a simple block diagram. Also
explain briefly the main conceptual difference between a Wiener filter and an adaptive
filter implementation. [15%]

(b) Name the four basic classes of application within the framework of part (a) and
describe any three of them with the aid of block diagrams. Give one practical example for
each class of applications. [15%]

(c) One of the most popular adaptive filtering algorithms is the Least-Mean-Square
(LMS) algorithm. Explain the main ideas behind the LMS algorithm and give the
coefficient update equation. How is it obtained from the cost function in part (a)? (No
detailed derivation is required.) [10%]

(d) The Normalised LMS (NMLS) algorithm is closely related to the LMS algorithm.

(i) Give the coefficient update equation of the NLMS algorithm. What is the
advantage of the NLMS algorithm over the LMS? [15%]

(ii) Describe how the NLMS coefficient update equation be interpreted as a
projection mechanism. Give a geometrical illustration of this projection. [15%]

(e) The idea of interpreting the NLMS coefficient update as a projection operation (as
in (d)(ii)) can be generalised to yield a whole class of improved adaptation algorithms.

(i) Explain how the NLMS projection idea can be generalised to improve
performance. Give a graphical illustration of the projections involved. [15%]

(ii) Give the coefficient update equation for the resulting algorithm. [15%]

SOLUTION:

(a) Length-M FIR System:

e(n) = y(n)−d(n) =
M−1

∑
m=0

hmu(n−m)−d(n) = hT u(n)−d(n),
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where

h = [h0,h1, . . . ,hM−1]
T ,

u(n) = [u(n),u(n−1), . . . ,u(n−M+1)]T .

h=(h[0],...,h[L-1])

+
-

u[n] y[n]

d[n]

e[n]

Adaptation
algorithm

Cost function to be minimized w.r.t. h:
mean squared error J(h) = E{e2}.

•Wiener filter: J is minimized under stationarity assumptions

•Adaptive solution: nonstationary/time-varying environments are allowed.

(b) Four basic classes of adaptive filter applications.

-

(a) System Identification: (b) Inverse Modeling:

(c) (Linear) Prediction: (d) Interference Cancellation:

unknown
system

adaptive
filter  h +

e(n)

x(n)

-

unknown
system

adaptive
filter  h

+
e(n)

x(n)

delay

-
one sample
delay

adaptive
filter  h

+
e(n)x(n)

x(n-1)

x(n)

-
adaptive
filter  h

+
e(n)"primary

signal"

"reference
signal"

Examples: (a) echo cancellation, (b) equalizer, dereverberation, (c) linear predictive
coding for speech signals, (d) acoustic noise cancellation,

(c) LMS:
h(n+1) = h(n)+µu(n)e(n).

The LMS update can be obtained by a stochastic approximation of the steepest descent
algorithm, based on the cost function J (see above), i.e.,

h(n+1) = h(n)− µ
2

∇J(h(n)).
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In the stochastic approximation, the expectation in the update is replaced by the
instantaneous value.

(d) (i) NLMS:

h(n+1) = h(n)+µ
u(n)

∥u∥2 +δ
e(n).

In the original LMS algorithm, the limits of the stepsize µ for stable convergence
depend on the input signal power. Specifically, 0 ≤ µ < 2

ME{u2(n)} for LMS.

The normalization in NLMS removes this power dependence of the stepsize, i.e.,
0 ≤ µ < 2, making it more suitable in many applications with nonstationary signals.

(ii) Current misalignment: δh(n) = hopt −h(n)⇒ e(n) = uT (n)δh(n)
Current NLMS adjustment (for µ = 1): ∆h(n) = h(n+1)−h(n),

∆h(n) =
uT (n)δh(n)
∥u(n)∥2 u(n)

h

u(n)h(n)

opt δh(n)

∆h(n)

The adjustment vector ∆h(n) is the projection of the current misalignment δh(n)
onto the current input signal vector u(n).

(e) Affine Projection Algorithm (APA):

(i) The update ∆h(n) is the projection of the current misalignment δh(n) onto a
p-dimensional subspace spanned by the p most recent input signal vectors.

Plane

x(k)

x(k-1)

(subspace)

h(k)

δh(k)

h

∆h(k)^

^
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(ii)

e(n) = y(n)−XT (n)ĥ(n)

ĥ(n+1) = ĥ(n)+µX(n)[XT (n)X(n)+δ I]−1e(n),

where e(k) is an error vector of order p,

e(n) = [e1(n),e2(n), . . . ,ep(n)]T

and
y(n) = [y(n),y(n−1), . . . ,y(n− p+1)]T ,

X(n) = [u(n),u(n−1), . . . ,u(n− p+1)].

The update for the new coefficient vector h(n+ 1) follows from the objective to
cancel the error of the latest p time instances, i.e.,

uT (n)ĥ(n+1) = d(n)

uT (n−1)ĥ(n+1) = d(n−1)
...

uT (n− p+1)ĥ(n+1) = d(n− p+1).
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4 Examiner’s comment: The least popular question, but again well handled by most.

Consider the following recursive algorithm:

h(n) = h(n−1)+µR̃−1(p−Rh(n−1)),

where R and p are a definite positive matrix (input correlation matrix) and a vector
(crosscorrelation vector between input signal and reference) of appropriate dimensions,
respectively. The definite positive matrix R̃ is assumed to be an approximation or estimate
of the true correlation matrix R. Moreover, it is assumed that R̃ can be expressed as
R̃ = QΛ̃QT , where the matrix Q is an orthonormal matrix and contains the eigenvectors
of the original correlation matrix R, and Λ̃ is approximated as a diagonal matrix.

(a) Assuming the coefficient vector h(n) of the algorithm converges towards a limit
hopt, find an expression for hopt. [10%]

(b) (i) Based on the eigenvalue decomposition (modal decomposition) of R and the
above expression decomposition of R̃, obtain a recursion for the misalignment
h(n)− hopt in the corresponding eigendomain, and find the limits for the choice
of the stepsize µ ensuring convergence of the algorithm whatever initial vector h(0)
is chosen. [30%]

(ii) Discuss the extreme cases R̃ = R and R̃ = I. Distinguish in this discussion
between the use of a common stepsize for all modes, and modal stepsizes in which
different step sizes may be chosen for each mode. [15%]

(iii) In the case R̃ = I and a single stepsize for all modes, express the range of
stepsize in terms of a signal variance rather than eigenvalues. [15%]

(c) In practical applications, the quantities R and p are typically not known in advance.
Moreover, they can be time-varying.

(i) How can the above recursive algorithm be approximated to obtain practical
algorithms such as the LMS algorithm? State the relation explicitly using equations.

[10%]

(ii) How is the matrix R̃ defined for the LMS algorithm? [10%]

(iii) How should the matrix R̃ be defined in order to obtain an RLS-like algorithm?
Note that in this case, it will be required to handle nonstationary environments. [10%]

SOLUTION:
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We consider
h(n) = h(n−1)+µR̃−1(p−Rh(n−1)).

(a) Limit: h(n) = h(n−1)
⇒ p−Rh(n−1) = 0
⇒ hopt = R−1p (= Wiener solution)

(b) (i) Misalignment:

(h(n)−hopt) = (h(n−1)−hopt)−µR̃−1R(h(n−1)−hopt)

= (I−µR̃−1R)(h(n−1)−hopt).

Let R = QΛQT , QT Q = I, R̃ = QΛ̃QT , and
v(n) = QT (h(n)−hopt).
For the misalignment we obtain:

v(n) = QT (I−µR̃−1R)(h(n−1)−hopt)

= (I−µΛ̃−1Λ)v(n−1).

The k-th component of this misalignment vector reads

vk(n) =
(

1−µ
λk

λ̃k

)
vk(n−1).

Condition for stability: ∣∣∣∣1−µ
λk

λ̃k

∣∣∣∣< 1,

i.e.,

0 ≤ µ ≤ 2
λ̃k
λk

.

(ii) •Case R̃ = R: We obtain 0 ≤ µ ≤ 2
(valid for all modes and, thus, also for the common step size)

•Case R̃ = I: We obtain 0 ≤ µ ≤ 2
λk

.

In total, for common step size: 0 ≤ µ ≤ 2
λmax

,
where λmax denotes the largest eigenvalue of R.

(iii)

λmax <
M

∑
k=1

λk = tr{Λ}= tr{ΛQT Q}= tr{QΛQT}

= tr{R}= M ·E{u2(n)}.
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Hence,

0 ≤ µ <
2

M ·E{u2(n)}
.

(c) Stochastic approximation of the update:

p−Rh = E{u(n)d(n)}−E{u(n)uT (n)h}
= E{u(n)(d(n)−uT (n)h)}
= E{u(n)e(n)}
≈ u(n)e(n).

Hence, in practice, p−Rh is replaced by u(n)e(n).

LMS: R̃ = I
RLS: R̃(n) = λ R̃(n− 1)+u(n)uT (n), where λ denotes a forgetting factor (0 < λ < 1).
The forgetting factor allows us to handle nonstationary environments.

END OF PAPER
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