
Solutions to 4F7, Adaptive Filters and Spectrum Estimation, 2017, Part IIB
Q1a. For k ≥ 0, noting that E(x(n− k)w(n)) = 0,

E(x(n− k)d(n)) =

∞∑
m=0

amE(x(n− k)x(n−m))

=

∞∑
m=0

amβ
|k−m|.

This is a convolution of two sequences. We also see that matrix R is

1 β · · · βM−1

β 1 β

1
...

. . . β
βM−1 · · · β 1


Q1b. Differentiate E

(
d(n)− hTx(n)

)2 wrt to vector h and set to zero to
get the answer.

Q1c. Using Rh = p for M = 1 we get h0 =
∑∞
m=0 amβ

m. The solution is
not a0 since the sequence x(n) is not an independent sequence.

The MSE for h0 = a0 is E (w(n) +
∑∞
m=1 amx(n−m))

2
= E

(
w(n)2

)
+

E (
∑∞
m=1 amx(n−m))

2
.

Q1d. Bookwork.
Q1e. Looking at the ith row of the relationship Rh = p we see that it is

βi−1h0 + . . .+ β0hi−1 + β1hi + . . .+ β|M−i|hM−1 =

∞∑
m=0

amβ
|i−1−m|.

In the limit as M → ∞, the left hand side becomes
∑∞
m=0 hmβ

|i−1−m|. Thus
each row i of Rh = p is expressing the relationship(

{hm}∞m=0 ∗
{
β|m|

}m=∞

m=−∞

)
i

=

(
{am}∞m=0 ∗

{
β|m|

}m=∞

m=−∞

)
i

.

Clearly one solution is hm = am for all m. This is a convex problem and thus
the solution is unique.

Q1f-i. For iid source symbols β = 0 since E(x(n)) = 0. The matrix R
is the identity matrix. Row i of vector p is ai−1. Thus Wiener solution is
h0 = a0, . . . , hM−1 = aM−1.

Q1f-ii. The minimum MSE (or MMSE) is E (w(n) +
∑∞
m=M amx(n−m))

2

which evaluates to σ2+
∑∞
m=M a2m. Since sequence {am}

∞
m=0 is square summable,

the MMSE will decrease with M and asymptote towards σ2 from above.
Examiner: The most popular and straightforward question, well-answered

by most candidates. Part (f)-ii was surprisingly difficult for many.
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Q2a. The cost function is E
{
(θ0(c− 1) + cv(0))

2
}

which evaluates to (c−
1)2E(θ20) + c2σ2

v . Minimising wrt c gives

c =
E(θ20)

E(θ20) + σ2
v

or 1− c = σ2
v

E(θ20) + σ2
v

.

The MSE is obtained by substitution. Call this minimum MSE

σ2
0 = (c− 1)2E

{
θ20
}
+ c2E

{
v(0)2

}
.

Q2b. θ1−θ̃1 = (θ0−dθ̂0)+w(1). The MSE is E
{
(θ0 − dθ̂0)2

}
+σ2

w. Note that

E
{
(θ0 − dθ̂0)2

}
= E

{
(θ0 − dcy0)2

}
. Since c is optimal for E

{
(θ0 − cy0)2

}
, the

MSE is minimised when d = 1. Thus θ̃1 = θ̂0 = cy0. The minimum MSE is
σ2
0 + σ2

w.
Q2c-i. E(θ̃1) = E(cy0) = cE(θ0). E(y1) = E(θ0). E(θ1) = E(θ0). So

Kc+ L = 1 will give an unbiased estimate.
Q2c-ii. Write

θ̂1 = Kc
θ̃1
c

+ (L− 1)θ1 + θ1 + Lv(1)

θ̂1 − θ1 = Kc
θ̃1
c
−Kcθ1 + Lv(1)

= Kc

(
θ̃1
c
− θ1

)
+ Lv(1)

E
(
θ̂1 − θ1

)2
= (1− L)2E

(
θ̃1
c
− θ1

)2

+ L2σ2
v

Minimising wrt L gives (from part a)

L =
E
(
θ̃1
c − θ1

)2
E
(
θ̃1
c − θ1

)2
+ σ2

v

=
σ2
v + σ2

w

2σ2
v + σ2

w

using θ̃1 = cy0. Solve for K using Kc+ L = 1.
Q2d. To match the observed process to the previous parts, use yn/bn as the

observation. But there is a discrepancy in the state transition.
Use the optimal c from part a for the observation y0/b0. This gives best

estimate of θ0 given y0/b0.
step 1: To get the best estimate θ̃1 for θ1 before observing y1/b1, re-solve

part (b) to get d = a1.

step 2: Use the scheme in part c-ii to update θ̃1 to θ̂1 using y1/b1.
Now loop procedure step 1 and step 2.
Examiner: The second most popular question and turned out to be the

most difficult question for the candidates. The solution to part (b) should have
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followed part (a) almost by inspection. Unfortunately most ended up repeating
the calculations. Candidates were largely lost in calculations in part (c)-ii. Part
(d) poorly answered and candidates failed to properly connect with the solution
to previous parts.
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Q3a-i. Strict stationarity implies p(x0, . . . , xk) = p(xn, . . . , xn+k) for all n
and k.

Q3a-ii. We need to assume wn is white Gaussian noise. This implies
p(x0, . . . , xP−1) is a Gaussian density. Need to find its mean vector and co-
variance matrix. Let xn = (xn, . . . , xn−P+1)

T . Write xn as

xn = Axn−1 + bwn

where b = (1, 0, . . . 0)T . E(xn) = AE(xn−1). Thus mean is 0.
Compute E(xnx

T
n ) = AE(xn−1x

T
n−1)A

T + σ2bbT . Let S = E(xnx
T
n ) =

E(xn−1x
T
n−1) and solve this equation for components of matrix S.

Q3b-i. The process is xn = a2xn−2 + wn. We see that odd and even time
indices define two independent AR(1) processes. That is let zk = x2k and
yk = x2k+1 for k = 0, 1, . . . Thus {zk}k≥0 and {yk}k≥0 are independent of each
other, x0 = z0, y0 = x1 , zk = a2zk−1 + w2k and yk = a2yk−1 + w2k+1.

Using procedure from a-ii, stationary mean of zk is 0. Stationary variance
is E(z2k) = a22E(z2k−1)+E(w2

2k), solving gives E(z2k) = σ2/(1− a22). Same mean
and variance for yk. So

p(x0, x1) = p(z0)p(y0)

gives final answer.
Q3b-ii. Assume n = 2m. Using this,

p(x2, . . . , xn|x0, x1) = p(z1, . . . , zm|z0)p(y1, . . . , ym−1|y0).

Now solve for the MLE.

logp(z1, . . . , zm|z0) = m log
1√
2πσ

− 1

2σ2

m∑
i=1

(zi − a2zi−1)2

logp(y1, . . . , ym−1|y0) = (m− 1) log
1√
2πσ

− 1

2σ2

m−1∑
i=1

(yi − a2yi−1)2

Fix σ2, differentiate and solve for a2 first. Then differentiate and solve for σ2

using found a2. This gives

a2 =

(
m∑
i=1

zizi−1 +

m−1∑
i=1

yiyi−1

)
/

(
m∑
i=1

z2i−1 +

m−1∑
i=1

y2i−1

)

Let L =
∑m
i=1(zi − a2zi−1)2 +

∑m−1
i=1 (yi − a2yi−1)2 at found a2. Solving for σ2

yields

σ2 =
L

n+ 1− 2
.

Q3b-iii: Bookwork.
Examiner: Very well answered question although only attempted by roughly

50% of candidates. Many did not know the definition of strict stationarity.
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Part (b)-ii was not solved correctly, it was the stationary distribution that was
needed here. Part (b)-iii was well answered with candidates reverse engineering
the Yule-Walker solution from the obtained MLE one as opposed to having to
remember it.
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Q4a. Follow procedure in lecture notes.
Q4b-i. Since xn is white Gaussian noise, the periodograms are independent

of each other.

var
(
Ŝ(k)

)
= (1− γk)2var

(
Ŝ(k−1)

)
+ γ2kvar

(
P̂ (k)

)
where P̂ (k) = |· · · |2 /N is the periodogram of frame k. When γk = 1/k, we
are computing the sample average P̂ (1), P̂ (2), . . . , P̂ (k). Note that var

(
P̂ (k)

)
is not a function of k, call this value pN where N indicates frame length. So
var
(
Ŝ(k)

)
= pN/k.

When γk = a, we have a geometric series. Note that the variance becomes∑k
n=1 pNa

2
[
(1− a)2

]k−n
= pNa

2
∑k−1
i=0

[
(1− a)2

]i
.

Q4b-ii. The sample means limiting variance is (trivially) 0. The geometric
series case is pNa2/

(
1− (1− a)2

)
= pNa/(2− a).

Q4c. First note that E(x2n) = 2σ2, E(xnxn+1) = σ2 and other E(xnxn+k) =
0 for other values of k. Also,

N−1∑
n=0

N−1∑
m=0

xnxm =

N−1∑
n=0

x2n +

N−2∑
n=0

xnxn+1 +

N−1∑
n=1

xnxn−1 +R

where E(R) = 0 owing to the autocorrelation of xn. So mean value is

1

N

(
N2σ2 + (N − 1)2σ2

)
.

Examiner: Attempted by roughly 50% of candidates. Part (a) was not very
well answered. A properly executed sketch of the derivation would have been
sufficient. Part (b) was also not well answered and candidates failed to calculate
the variance in the most straightforward manner as the crib details. This had a
knock on effect to the remaining parts. Part (c) was meant to be an easy mark
earner but many did not capitalise on it.

Sumeetpal S. Singh
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