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Question 1

Part (a)
Differentiate wrt to each hi

∂

∂hi
E
{

(X − X̂n)2
}

= E
{
−2(X − X̂n)(Yi −E {Yi})

}
for i = 1, . . . , n. Let

Ȳ =

 Y1 −E {Y1}
...

Yn −E {Yn}

 , h̄ =

 h1
...
hn

 .
Note that

X̂n = h̄T Ȳ = Ȳ T h̄.

Setting the derivative to zero, in vector form, gives

E
{

(X − X̂n)Ȳ
}

= 0

E
{
XȲ

}
= E(Ȳ Ȳ T )h̄

b = Ah̄.

[30%]

Part (b)-i
This can be seen from Ah̄ = b directly. Alternatively, differentiate the cost
function wrt hn and set the derivative to zero, that is ∂

∂hn
E
{

(X − X̂n)2
}

= 0

1



yields

E
{

(X − X̂n)(Yn −E {Yn})
}

= 0

E {X(Yn −E {Yn})} =

n∑
i=1

hiE {(Yi −E {Yi})(Yn −E {Yn})}

=

n∑
i=1

hi (E {YiYn} −E {Yi}E {Yn})

= hn

(
E
{
Y 2
n

}
−E {Yn}2

)
.

Note that E {X(Yn −E {Yn})} = E {XYn} as E {X} = 0. Thus

hn =
E {XYn}

E {Y 2
n } −E {Yn}2

.

[10%]

Part (b)-ii
The last row of the matrix A is

[0, . . . , 0,E {(Yn −E {Yn})(Yn −E {Yn})}]

since E {(Yi −E {Yi})(Yn −E {Yn})} = 0 for i 6= n. Since A is symmetric, the
last column is the transpose of the last row. Thus

A =

 B

0
...
0

0, . . . , 0 E
{
Y 2
n

}
−E {Yn}2


From part (a), we can see that the solution to the best linear estimate X̂n−1 is
given by reduced problem

B

 h1
...

hn−1

 =

 E {XY1}
...

E {XYn−1}

 (1)

and thus we can express X̂n as

X̂n = X̂n−1 + hn(Yn −E {Yn}).

= X̂n−1 +
E {XYn}

E {Y 2
n } −E {Yn}2

(Yn −E {Yn}).

[20%]
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Part (c)-i
Note E {Yi} = 0 for i = 1, . . . , n− 1 since sign(X) is either 1 or −1 with equal
probabilities. Thus

X̂n−1 = h1Y1 + . . .+ hn−1Yn−1

given by the solution of (1). Also

E {YiYj} = 1

for i 6= j, E
{
Y 2
i

}
= 1 + σ2 and also

E {YiX} = E {sign(X)X}+ E {WiX} = E {|X|}

and thus
1 + σ2 1 · · · 1

1 1 + σ2
...

...
...

. . . 1
1 1 · · · 1 + σ2


 h1

...
hn−1

 = E {|X|}

 1
...
1


[20%]

Part (c)-ii
For the measurement Yn,

E {YiYn} = E {(sign(X) +Wi) (|X|+Wn)}
= E {sign(X)|X|}+ E {Wi|X|}+ E {sign(X)Wn}+ E {WiWn}
= E {sign(X)|X|}
= E {X}
= 0

= E {Yi}E {Yn} .

So use the solution to part (b)-ii where it was shown

X̂n = X̂n−1 + hn(Yn −E {Yn}).

But hn = 0 since

E {XYn} = E {X|X|}+ E {XWn}
= E {sign(X)|X| |X}+ E {XWn}
= E

{
sign(X)|X|2

}
+ E {X}E {Wn}

= 0.

[20%]
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Examiner’s comments: The most popular (answered by 90% of candidates)
and straightforward question, well-answered by most candidates. The solution
for part (b)-ii should have been a simple corollary of the previous parts but some
candidates did not make the connection and some even tried to employ a state-
space formulation to arrive at the answer which is irrelevant here. Part (c)-i was
surprisingly difficult for many. Many candidates did not manage to successfully
apply the results of the previous parts to this applied problem, similarly for
part (c)-ii. Calculations involving sign(X) and |X| was difficult for a significant
number of candidates.
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Question 2

Part (a)
Do the update step first:

p (xn|y1:n−1, yn) =
p (xn|y1:n−1) p(yn|xn)

p(yn|y1:n−1)

p(yn|y1:n−1) = p(yn|1) Pr (Xn = 1|y1:n−1) + p(yn| − 1) Pr (Xn = −1|y1:n−1)

Do the prediction step next:

Pr (Xn+1 = 1|y1:n) = Pr (Xn = 1|y1:n) (1− α) + Pr (Xn = −1|y1:n)α

[20%]

Part (b)

p(yn+1:T |xn) =
∑
xn+1

p(yn+1:T , xn+1|xn)

=
∑
xn+1

p(yn+1:T |xn+1, xn)p(xn+1|xn)

=
∑
xn+1

p(yn+1:T |xn+1)p(xn+1|xn)

Then calculate

p(yn:T |xn) = p(yn+1:T |yn, xn)p(yn|xn)

= p(yn+1:T |xn)p(yn|xn)

[20%]

Part (c)
To compute p(xn|y1:T ), use computed quantities from previous parts:

p(xn|y1:T ) =
p(xn, y1:T )∑
xn
p(xn, y1:T )

p(xn, y1:T ) = p(yn:T |xn, y1:n−1)p(xn, y1:n−1)

= p(yn:T |xn)p(xn, y1:n−1)

= p(yn:T |xn)p(xn|y1:n−1)p(y1:n−1).

Now normalise to get

p(xn|y1:T ) =
p(yn:T |xn)p(xn|y1:n−1)∑
xn
p(yn:T |xn)p(xn|y1:n−1)

.

[10%]
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Part (d)
Let s denote the number of instances yi = xi. The

log p(y1, . . . , yT |x1, . . . , xT ) =

T∑
i=1

log p(yi|xi)

= s log(1− β) + (T − s) log β.

The maximiser (via calculus) is

β =
T − s
T

.

[20%]

Part (e)
The EM algorithm is comprised of the E-step and the M-step.

Let β̂ be the current best estimate of β. Compute p(xi|y1:T ), for i = 1, . . . , T

with the current estimate β̂ and then compute the Q-function

Q(β) =

T∑
i=1

∑
xi

p(xi|y1:T ) log p(yi|xi)

=

T∑
i=1

(Pr(Xi = yi|y1:T ) log(1− β) + Pr(Xi 6= yi|y1:T ) log β)

= s log(1− β) + (T − s) log β

where

s =

T∑
i=1

Pr(Xi = yi|y1:T ).

The the M-step then maximises Q(β) to get the new best estimate of β. This
E-M steps are repeated until convergence of the estimate is observed.

[20%]

Part (f)
The hidden state represents the trend in the time series, that is if Xn = 1 then
we expect a price increase or Sn ≥ Sn−1. If Xn = −1 then we expect a price
decrease or Sn < Sn−1. When β = 0 or β = 1 the hidden state sequence is a
deterministic function of Yn. If 1 > β > 0 then the model allows the observed
price trend Yn to momentarily depart from the price trend Xn given by the
hidden state; the smoother in part (c) will denoise the estimate of Xn. If
β = 0.5 then not possible to estimate Xn.

[10%]

6



Examiner’s comments: A popular question answered by 76% of candidates.
Parts (a) and (b) were easy point earners for many. Some had trouble solving
part (c) by drawing on the results of the previous two parts. Part (e) was
disappointing and largely answered incompletely although part (d) did build up
to it. The application in part (f) was poorly answered by the majority.
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Question 3

Part (a)-i

p(xn+1|y0:n)

=

∫
p(xn|y0:n)p(xn+1|xn)dxn

=

∫
p(xn|y0:n)

1√
2πσw

exp

(
− 1

2σw
(xn+1 − xn)2

)
dxn.

Now use the hint. p(xn|y0:n) is N (µn, σn). Using the hint, the above integral
is the pdf of the sum of 2 independent Gaussian random variables. The first is
N (µn, σn) and second is N (0, σw). Thus p(xn+1|y0:n) is N (µn, σn + σw).

[20%]

Part (a)-ii
The update equation

p(xn+1|y0:n+1)

=
p(xn+1|y0:n)p(yn+1|xn+1)

p(yn+1|y0:n)

=
1

p(yn+1|y0:n)

1√
2πσv

exp

(
− 1

2σv
(yn+1 − xn+1)2

)
p(xn+1|y0:n)

Using the hint, p(xn+1|y0:n+1) is the conditional density of U1 given U1 +U2 =
yn+1 where U1 is N (µn, σn + σw) and U2 is N (0, σv). Thus the variance is

σn+1 =
(σn + σw)σv
σn + σw + σv

and the mean is
µn+1 =

(σn + σw) yn+1 + σvµn

(σn + σw) + σv
.

[20%]

Part (b)
We can find the fixed point σn+1 = σn.

(σn + σw)σv
σn + σw + σv

= σn

σnσv + σwσv = σ2
n + σwσn + σvσn

σwσv − σwσn = σ2
n
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Clearly, by sketching the l.h.s. and r.h.s. as a function of σn, the solution lies
in the range 0 ≤ σ2

n ≤ σwσv. (Another way to see this is to note that σwσn is
positive.)

After sometime, we will have σn+1 = σn, that is the variance of p(xn|y0, . . . , yn)
will stop changing. Without needing to solve for the fixed point, the crude bound
σwσv can be used to decide how accurate the sensor has to be to obtain a given
precision in the variance σn of the estimate of the hidden state. [30%]

Part (c)
From the solution for µn+1 we see that µn+1 = snyn+1 + rnµn which is linear
combination of the new observation and previous mean. Extrapolating back to
time 0 we see that µn is indeed a linear combination of µ0 and y0, . . . , yn.

[10%]

Part (d)
Consider some x̂n = µn + δ. The error is∫

(µn + δ − xn)
2
p(xn|y0:n)dxn

=

∫
(µn − xn)

2
p(xn|y0:n)dxn + δ2

+ 2δ

∫
(µn − xn) p(xn|y0:n)dxn

=

∫
(µn − xn)

2
p(xn|y0:n)dxn + δ2.

So the error is minimised by setting δ = 0. [20%]
Examiner’s comments: Least popular and attempted by 57% of candidates;

perhaps many were not comfortable with Bayesian calculations involving uni-
variate Gaussian models. Many had an unnecessary amount of trouble with
the two components of part (a) although this was bookwork; the hint was not
effectively employed. This had a knock-on effect on part (c). Part (d) again
was not well done as many failed to realise that µn was the conditional mean of
the pdf p(xn|y1, . . . , yn) and thus does indeed achieve the least possible mean
square error.

9



Question 4

Part (a)
Let P be the transition probability matrix of the Markov chain,

Pi,j = Pr (Xn+1 = j|Xn = i) .

The prediction and update steps are: for xn+1 > 0

p(xn+1|y0:n) =

∞∑
xn=0

p(xn+1|xn)p(xn|y0:n)

= Pxn+1−1,xn+1
p(xn+1 − 1|y0:n) + Pxn+1+1,xn+1

p(xn + 1|y0:n)

= αp(xn+1 − 1|y0:n) + (1− α)p(xn + 1|y0:n)

For xn+1 = 0,

p(xn+1 = 0|y0:n) = (1− α)p(xn = 1|y0:n) + (1− α)p(xn = 0|y0:n).

The update step is

p(xn+1|y0:n+1) =
p(yn+1|xn+1)p(xn+1|y0:n)∑∞

xn+1=0 p(yn+1|xn+1)p(xn+1|y0:n)

where
p(yn+1|xn+1) =

1√
2πσ

exp

(
− 1

2σ
[yn+1 − xn+1]

2

)
.

[20%]

Part (b)-i
The pdf of the data is

p(y0:n) =

∞∑
x0=0

· · ·
∞∑

xn=0

p(y0:n|x0:n)p(x0:n)

=

∞∑
x0=0

· · ·
∞∑

xn=0

p(y0|x0) · · · p(yn|xn)p(x0:n)

The unbiased estimate of p(y0, . . . , yn) is

1

N

N∑
i=1

p(y0|Xi
0) · · · p(yn|Xi

n)p(Xi
0, . . . , X

i
n)

p(Xi
0, . . . , X

i
n)

=
1

N

N∑
i=1

p(y0|Xi
0) · · · p(yn|Xi

n)

=
1

N

N∑
i=1

wi
n
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since the samples are drawn from the pmf of the hidden states. The final
equation introduces convenient notation for the subsequent parts.

[10%]

Part (b)-ii
For any function h(x0, . . . , xn) the integral

∞∑
x0=0

· · ·
∞∑

xn=0

h(x0:n)p(x0:n|y0:n)

=

∞∑
x0=0

· · ·
∞∑

xn=0

h(x0:n)
p(x0:n, y0:n)

p(y0:n)

can be approximated by a the ratio of importance sampling estimates of the
numerator and denominator which gives∑N

i=1 h(Xi
0:n)wi

n∑N
i=1 w

i
n

=
1

Wn

N∑
i=1

h(Xi
0:n)wi

n

where Wn =
∑N

i=1 w
i
n. [10%]

Part (b)-iii
The importance sampling estimate of the derivative is

1

Wn

N∑
i=1

wi
n

d

dα
log p(Xi

1, . . . , X
i
n|Xi

0).

log p(Xi
1, . . . , X

i
n|Xi

0) =

n∑
k=1

log p(Xi
k|Xi

k−1)

= sin logα+
(
n− sin

)
log(1− α)
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where sin is the number of instances in the sequence Xi
0, . . . , X

i
n that Xi

k >
Xi

k−1.Thus

1

Wn

N∑
i=1

wi
n

d

dα
log p(Xi

1, . . . , X
i
n|Xi

0)

=
1

Wn

N∑
i=1

wi
n

d

dα

(
sin logα+

(
n− sin

)
log(1− α)

)
=

1

Wn

N∑
i=1

wi
n

(
sin
α
− n− sin

1− α

)

=
1

Wn

N∑
i=1

wi
n

(
sin
α

+
sin

1− α
− n

1− α

)

=
−n

1− α
+

1

Wn

N∑
i=1

wi
ns

i
n

(
1

α(1− α)

)
.

Set the derivative to zero to find α,

1

Wn

N∑
i=1

wi
ns

i
n

(
1

α(1− α)

)
=

n

1− α

1

n

1

Wn

N∑
i=1

wi
ns

i
n = α.

[30%]

Part (b)-iv
Perform the resampling operation as follows: sample J1, . . . , JN independently
such that

Pr(Ji = k) =
wk

n

Wn
, k = 1, . . . , N.

Then for each i = 1, . . . , N , sample Xi
n+1 from the transition probability matrix

p(xn+1|XJi
n ) and let

Xi
0:n+1 = (XJi

0:n, X
i
n+1), wi

n+1 =
Wn

N
.

For any function h(x0, . . . , xn+1) the importance sampling estimate of∑
x0:n+1

h(x0:n+1)p(x0:n+1|y0:n)

is ∑N
i=1 w

i
n+1h(Xi

0:n+1)∑N
i=1 w

i
n+1

=
1

N

N∑
i=1

h(Xi
0:n+1).

[10%]
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Part (b)-v
The importance sampling estimate of p(yn+1|y0:n) is

p̂(yn+1|y0:n) =
1

N

N∑
i=1

p(yn+1|Xi
n+1).

If we take the expected value of p(yn+1|Xi
n+1) with respect to the law of

(Ji, X
i
n+1) we get

E
{
p(yn+1|Xi

n+1)
}

=

N∑
k=1

Pr(Ji = k)

∫
p(yn+1|xn+1)p(xn+1|Xk

n)dxn+1

=

N∑
k=1

Pr(Ji = k)p(yn+1|Xk
n)

=

N∑
k=1

wk
n

Wn
p(yn+1|Xk

n).

So

E {p̂(yn+1|y0:n)} =

N∑
k=1

wk
n

Wn
p(yn+1|Xk

n)

Finally

E {p̂(y0:n)p̂(yn+1|y0:n)} = E

{
Wn

N

N∑
k=1

wk
n

Wn
p(yn+1|Xk

n)

}

= E

{
1

N

N∑
k=1

wk
np(yn+1|Xk

n)

}
= p(y0:n+1).

[20%]
Examiner’s comments: Attempted by 75% of candidates. Part (b)-iii proved

difficult for many and only partially complete answers were provided by the
majority. Some even failed to realise that the solution to part (b)-ii was needed
to compute the integral in the question. Quite a few candidates did not use
resampling in part (b)-iv although being explicitly asked to. Proving unbiased-
ness in part (b)-v, although bookwork, was not well done by the majority; some
even ignored the effect of resampling in their proof.
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