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ENGINEERING TRIPOS PART IIB

Wednesday 24 April 2013  9.30to 11

Module 4F8

IMAGE PROCESSING AND IMAGE CODING
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1 a ) We can write s as a Fourier series:

) =] oo (o0 : o :
i) = T T clpropy) el unpa0am)
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2z _ 2
where 2 = A and Q= Ay
We can then find the Fourier coefficients ¢ in the usual way:

c{p1,p2) —-/72/ s(uy,up) e~/ P1I0I+ P82 g4y dy,

-’1‘-162,/_22 /TL [ L i 8(uy — Ay, up — n2dy)

NS ngimee

xe S +p2u2) gy gy,

= c(p1,p2) = forall py,p;

The sampled image may then be expressed as:
P11 +paQus)
gs(uy,up) = gluy,up) A_A ;mpzz_m P11y +p2Qour)

Using the frequency shift or spatial modulation theorem to take the
Fourier transform

gluy,up)e/ P11 +P21) o G| — Q) p), @) — Qp)

gives:

1 [=-] o0
Gs(op, ) =-—— Y. Y Glo;—piQ1,©—prQ)
Al AZ Pl=—"%0 pyp=—00

It can therefore be seen that the Fourier transform or spectrum of the
sampled 2d signal is the periodic repetition of the spectrum of the unsampled
2d signal - precisely analogous to the 1d case. It is therefore clear that
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for a bandlimited 2d signal, we must sample at more than twice the largest
frequencies in the signal to keep these copies of the FT separate. Hence

2r 2n

— >2Q > 20

A Bl A, B2

These are the Nyquist frequencies, and if we sample below these we

observe artefacts which we call aliasing.
[30%]

(i1) If an image does not contain high frequencies simultaneously in both
dimensions, then it is more efficient to sample on a diamond grid (for obvious
reasons). For functions which are circularly symmetric or bandlimited over
a circular region, it can be shown that it is more efficient to sample on a
hexagonal grid. When we talk about ’efficiency’ here we generally mean
‘needing fewer samples’. However, computational load is rarely a problem
with current computational power, so the simplicity of rectangular sampling

means that we would rarely use anything else.
[10%]

(iii) we know that to avoid aliasing we need to sample at twice the largest
frequencies in the signal. Therefore

and
2z
Qry=—2>6Q
Ay
Therefore 2Q and 6Q are the minimum sampling frequencies (in % and uy
directions) required to avoid aliasing.
Soif Ay = Ay = /), we see that

Q=0Q=—=2Q

and we will avoid aliasing in the w; direction but not in the @, direction. The
spectrum is therefore a set of aliased delta functions as sketched below:
[20%]
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(b) Consider the bandpass filter given in the figure — one way to construct this is
to say that the ideal frequency response of this filter, H (@), @;), can be written as
H{wl:a)Z} H[(COI,(DZ) i H2(wl’a}2)

where H is a rectangular bandpass filter given by Hy, — Hyp,

1 ifICD”(QU] and|a)2|<.QU2
Hg(w),m) = ,
0 otherwise

1 if |0)1| < QLI and |602| < Q2
Hlb(wl:mz) = A
0 otherwise

and H is the separable ideal bandpass filter given by

1 if Q) < |an]| < Qup and Q75 < || < Qyn

0 otherwise

Hy(w), ;) =

We know that since H; is separable, we can write it as the product of two 1d filters, i.e.

Hy(wy, ) = Ha(@y) Hp( @)
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where Ha(a)lfj is an ideal 1-D bandpass filter with a lower cut-off frequency of £ |

and an upper cut-off frequency of Q. Similarly H,(w,) is an ideal 1-D bandpass filter
with cut-off frequencies ;7 and Q;;>. More explicitly we have
1 ifQ; < ICO1| < QU]

Hp(o)) = .
0 otherwise

1 if Qpp < |on| < Qs

Hp{wnp) = ,
0 otherwise

Thus, we can now work out the ideal impulse response of the filter from the impulse
responses of Hy and H,. We have (where h(nj.n3) = h(n Ay, nAz))

A Ay alhy pASA . A .
hiny.no) [ / Hs( oy, eJ("’l"] 1+ @2n289) 165 d
(ny,ng) = 202 /oy J-nja; s(an, @) 1dan
so that the impulse response for H;, is
A Ay 02 . o
hig(ny,np) = = 2/ / e/ MBI+ @2M282) 4oy d e,
Quo /-Qyy
_ A8 Q1 Qo
(m)?

Similarly, for H,; we have

Sll‘lC(QuznzAz) smc(QU 171 A] )

A2 101
hyp(ny,np) = _ﬁgLsmc(Qm"2A2i“nctQLl”lAl)

The impulse response for H> is similarly given by

AjAy n/A)

; AA, [T/B
hiny,np) = W Ha(‘fﬂl)ejm‘n'A1 dwlg

H Jiwnpnab; 4
g @n) J—nya, (P2 i

o) ‘/_QH Jjanma Sl A 1
L mMAL J ey JonmAr 40y / Jonnady f JnnaA;
(zn)[ an © "o € @) [San © 2T, €4

Thus we have

AJA . . . .
ha{ny,ny) = (::rjlzz [le sinc(Qu n1A;) — Q sinc(Qy) n]A|)] [QU2 sinc(Qy2 n2Ay) — Q2 sinc(Qy; n2A2)]

Now, forming /(ny,n;) from the difference of ky(ny,ny) and hy(n;,ny) we have

AA2

h(ny,ny) = [Q71 Q2 sinc(Qq1n1A1) sinc(Qr2n242) + Q11 Qo sinc(Q 1114 ) sinc(QyonpAg)
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—2Qq; Qg sinc(Qq n; A )sinc(12m4))

Thus we have that

AjA; AAy

A A2
K| = R—Q{, 19272, Ky = ""R,_QLIQUL K3 =2—5=Q; Q>

The figure shows that the maximum frequency ranges are within the values of /A
(for @) and /A, (for m,) - thus, the Nyquist criteria are satisfied and there will be no

aliasing.

(1) The Product Method for obtaining a 2-D window from 1-D
windows 1s to simply take the product of two 1-D windows:

winy,nz) = wy(ny) walny)

The Rotation Method of forming a 2-D window from 1-D windows
is to obtain a 2-D continuous window function w(u|,us) by rotating a 1-D
continuous window w (u).

w(iy,uz) = wi (u)|u=\/(u%+u%)

The continuous 2-D window is then sampled to produce a discrete 2-D

window w(n,ny):

w(nl ; n2) = W(ul ’ u2)|u1=n1 Ay, ua=ns Ay

The actual filter frequency response H{wj, ;) is given by the convolution
of the desired frequency response Hy(w;, ;) with the window function
spectrum W (@, ;).

Thus the effect of the window is to smooth H,; — clearly we would prefer
to have the mainlobe width of W (@, , @;) small so that H; is changed as little
as possible. We also want sidebands of small amplitude so that the ripples in
the (@, ;) plane outside the region of interest are kept small.

(i) To find the spectrum we need to FT each of the 1-D window functions.
Taking wy;
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We know that the second term is a pulse so has the standard FT of a
sinc
0.5 x 2U| sinc(w;U))
The triangle pulse ¢(u )} is given by
w JUp+1 for —U; <u; <0

tHup) =< —uy /UL +1 for 0 <u; < U

0 otherwise

So, we know find the FT of ¢(x;) via

0 _ y |
fu (u1/Ur + 1)e™ 14 duy +L '(—uy JU + e IO gy
-0

U
=2f0 (—uy /Uy + 1) cos(@yuy) duey
Evaluating this gives

2 Y

U
—— 1y cos{yu) du +2f cos{wyuy) du
Ui Y (oyu1) duy A (@yu) duy

Integrating the first term by parts and straightforwardly integrating the second

term gives:
2 . 2y Ul
Ura? [1—cos(wUy)] = U, sinc 5
Thus, the FT of w{u;) is
1U1

: L@
W{ew;) = Uy sinc{a Uy ) + U, smc2T

A plot of each term, plus the sum is given below (for U; = 1) (where

dashed is the sinc? term, dash-dot is the sinc term and solid is the sumy):
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The 2-D spectrum is simply given by the product of the2 1-D spectra:

U
W(w), ) =U,U; [ sinc{ewUy) + sinc2 wlel] [ sinc(wyUh) + sincz_a%}

[35%]

(iii) From the equations above and figure (a)(ii) we can see that the triangular
window produces a sinc? spectrum which has its first null at 27/U;, while
the constant term has a sinc spectrum with first null at £7/U;. From the figure,
we can see that the addition of the constant therefore reduces the width of the
mainlobe, but increases the amplitude of the sidelobes. [109%]

b @© If we take the convolution as a discrete sum, the expression for y
is:
ym)= Y h(m)x(n—m)+d(n)
meZ?
where n = (n,n3). [10%]

(ii) The optimal linear spatially invariant filter called the Wiener Filter is
arrived at by estimating the following cost function:

Q = E{[x(n) — £(n)]*}
[10%]
(iii) The Wiener solution is ‘easy’ to calculate and has known reconstruction
errors. However, it is certainly by no means the best in real problems. It

depends on the assumption of gaussianity and knowledge of the covariance
structure g priori.
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Since the world this not so simple, we are forced to consider non-linear
methods which can be dealt with via alternative priors. One such prior which
has been widely andsuccessfully used is the entropy prior.

This produces the Maximum Entropy Method (MEM) which is applied
to positive, additive distibutions (PADS). Let x be the (true) pixel vector we
are trying to estimate, Pr(x) is given by

Pr(x) o< e*5

where one version of the entropy S (sometimes known as the cross
entropy) of the image is given by

A S—

i T
where m is the measure on an image space (the model) to which the
image x defaults in the absence of data. (Can see global maximum of S occurs
atXx=m.)
[A very much shorter answer will suffice in the exam!}
[10%]
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END OF SOLUTIONS
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