
Solutions: 4F8 2015

ENGINEERING TRIPOS PART IIB

Friday 1st May 2015 2 to 3.30

Module 4F8

IMAGE PROCESSING AND IMAGE CODING

Version: NGK/3

2

1 (a) (i) First take the FT of the central stripe, call this S1:

GS1(ω1,ω2) =
∫ +b

−b

∫ +a/2

−a/2
Ae− jω1u1e− jω2u2 du1du2

= A
∫ +b

−b
e− jω2u2du2

∫ +a/2

−a/2
e− jω1u1du1

= A
[

e− jω1u1

− jω1

]a/2

−a/2

[
e− jω2u2

− jω2

]b

−b

= 2Aab sinc
aω1

2
sinc bω2

...or just use standard result for the FT of a rectangular pulse from the
Databook.

Now, each of the other 4 dark stripes are just shifted versions of this, so
their FT will just be the above multiplied by the appropriate phase factor.
If from left to right the stripes are S5,S3,S1,S2,S4, the FTs are (using
g(u1−µ1,u2−µ2)⇔ e− j(µ1ω1+µ2ω2) GS1(ω1,ω2)):

GS2 =GS1e− j2aω1 , GS3 =GS1e j2aω1 , GS4 =GS1e− j4aω1, GS5 =GS1e j4aω1

The total FT G is therefore the sum of these 5 FTs:

G(ω1,ω2) = GS1

[
e j4aω1 + e j2aω1 +1+ e− j2aω1 + e− j4aω1

]
= 2Aab sinc bω2 sinc

aω1
2

[1+2cos2aω1 +2cos4aω1]

This is a pure sinc function along the ω2 axis with a single main-lobe
peak at ω2 = 0, and zeros at multiples of π/b = 2π/9a on either side of
the main lobe. This is multiplied by a modulated sinc function along the ω1
axis, such that the sinc function has a main lobe peak at ω1 = 0, and zeros at
multiples of 2π/a on either side of the main lobe. The modulating function
[1+2cos2aω1 +2cos4aω1] has sharp positive peaks of value 5 at multiples
of π/a, where all 3 terms add coherently, and small ripples in between these
peaks. The even-numbered sharp peaks are suppressed by the zeros of the
sincaω1

2 function (except at ω1 = 0), and the odd-numbered sharp peaks
coincide with the centres of the lobes of the sinc function. This is illustrated
along the ω1 axis in the figure below:

Version: NGK/3 (cont.

3

The spectrum in the ω2 direction is a sinc function, consistent with a
waveform that is a single rectangular pulse of width 2b. The spectrum in the
ω1 direction is approximately a set of impulses, consistent with the spectrum
of an infinitely long square wave of period 2a, convolved with a sinc function
that is consistent with multiplication in the spatial domain by a pulse of width
9a.

[40%]

(ii) To avoid aliasing we need to sample at more than twice the largest
(significant) frequency in the image. But the spectrum is composed of
sinc functions along both frequency axes so we must make assumptions /
approximations. The spectrum is wider in the ω1 direction so we assume that,
in order to preserve reasonably sharp edges, we must pass frequencies up to
(say) the 6th harmonic of the square wave fundamental frequency 1/2a Hz;
i.e. up to ±3/a Hz, which includes the peaks at 1.5/a and 2.5/a in the above
figure. Hence the sampling frequency should be at least twice this, which is
6/a ; i.e. the sampling period should be ≤ a/6.

A lower sampling frequency could be used in the ω2 direction but it is
usually better to sample images at the same rate in both directions so that the
amount of blurring appears the same in all directions. [10%]

(b) (i) The Product Method for obtaining a 2-D window from 1-D
windows is to simply take the product of two 1-D windows:

Version: NGK/3 (TURN OVER for continuation of SOLUTION 1

4

w(n1,n2) = w1(n1) w2(n2)

The Rotation Method of forming a 2-D window from 1-D windows
is to obtain a 2-D continuous window function w(u1,u2) by rotating a 1-D
continuous window w1(u).

w(u1,u2) = w1(u)|u=√(u2
1+u2

2)

The continuous 2-D window is then sampled to produce a discrete 2-D
window w(n1,n2):

w(n1,n2) = w(u1,u2)|u1=n1 ∆1, u2=n2 ∆2

The actual filter frequency response H(ω1,ω2) is given by the
convolution of the desired frequency response Hd(ω1,ω2) with the window
function spectrum W (ω1,ω2).

Thus the effect of the window is to smooth Hd ; so clearly we would
prefer to have the mainlobe width of W (ω1,ω2) small so that Hd is changed
as little as possible. We also want its sidelobes to be of small amplitude so
that ripples in the (ω1,ω2) plane outside the region of interest are kept small.

[15%]

(ii) This is a triangular window of width 2U and of unit height. From the
E&I databook, its FT is given by:

U1 sinc2 ω1U1
2

Sketches of w1 and W1 are given below. On the sinc2 plot the proper
amplitude (U1) should be marked and the positions of the first nulls
(±2π/U1).

u1

1

U1−U1

Version: NGK/3 (cont.

5

The full 2D spectrum is therefore given by the product of the separate
1D spectra:

W (ω1,ω2) =W1(ω1)W2(ω2) =U1U2 sinc2 ω1U1
2

sinc2 ω2U2
2

[25%]

(iii) As the triangular window produces a sinc2 spectrum with its first nulls
at ωi = 2π/Ui, the mainlobe width decreases as Ui increases and the sidelobes
drop down in magnitude fairly quickly – but there is no suppression of
sidelobes. A smoother window function such as a raised cosine (Hamming or
Hanning window) would offer lower amplitude (and possibly faster decaying)
sidelobes with about the same main-lobe width.

[10%]

Version: NGK/3 (TURN OVER

6

2 (a) (i) We assume that our observed image, y(n), can be modelled as a
convolution of the true image, x(n), with a point spread function (psf), h(n),
plus additive noise, d(n), i.e.

y(n) = ∑
m∈Z2

h(m)x(n−m)+d(n)

Here we have used vector notation to denote the locations of the discrete
pixels of the image; e.g. n = (n1,n2) and m = (m1,m2). [10%]

(ii) If we ignore noise, we can take the Fourier transform of each side of the
above convolution equation to give:

Y (ω1,ω2) = H(ω1,ω2)X(ω1,ω2)

∴ X(ω1,ω2) =
Y (ω1,ω2)

H(ω1,ω2)

The 1/H term is known as the inverse filter. If H(ω1,ω2) has zeros, then
the inverse filter, 1/H, will have infinite gain. If 1/H is very large (or
indeed infinite), small noise in the regions of the frequency plane where these
large values of 1/H occur will be hugely amplified. To counter this we can
threshold the frequency response, leading to the so-called, pseudo-inverse or
generalised inverse filter Hg(ω1,ω2) given by

Hg(ω1,ω2) =

1

H(ω1,ω2)
1

|H(ω1,ω2)|
< γ

0 otherwise
(1)

or

Hg(ω1,ω2) =

1

H(ω1,ω2)
1

|H(ω1,ω2)|
< γ

γ
|H(ω1,ω2)|
H(ω1,ω2)

otherwise
(2)

Clearly for 1
|H(ω1,ω2)|

≥ γ in equation 2, the modulus of the filter is set as γ ,
whereas in the previous equation it is set as 0.

Although the generalised inverse filter may perform reasonably well on
noiseless images, the performance is unsatisfactory with even mildly noisy
images due to the still significant noise gain at frequencies where |H(ω1,ω2)|
is relatively small. [10%]

Version: NGK/3 (cont.

7

(iii) (Note: this is a very full solution from the lecture notes. Shorter
versions with fewer intermediate steps would be acceptable.)
To obtain the standard form of the Wiener filter (in terms of Pxx,Pdd and H)
we firstly look at the autocorrelation function of y:

Ryy(p) = E{y(n)y(n−p)} where y(n) = ∑
m

h(m)x(n−m)+d(n)

We assume that the images are spatially statistically stationary and that x and
y are real. If signal and noise are uncorrelated and noise is zero mean:

Ryy(p) = E

{
∑
m

∑
q

h(m)x(n−m)h(q)x(n−p−q)

}
+E {d(n)d(n−p)}

= ∑
m

∑
q

h(m)h(q)E {x(n−m)x(n−p−q)} + Rdd(p)

∴ Ryy(p) = ∑
m

∑
q

h(m)h(q)Rxx(p+q−m) + Rdd(p)

Now take the Fourier transform of each side to give:

Pyy(ω) = ∑
p

{
∑
m

∑
q

h(m)h(q)Rxx(p+q−m)

}
e− jωT p + Pdd(ω)

where Pdd is the FT of the autocorrelation function of the noise. Interchange
order:

Pyy(ω) = ∑
m

∑
q

h(m)h(q) ∑
p

Rxx(p+q−m)e− jωT p + Pdd(ω)

Let k = (p+q−m), then:

Pyy(ω) = ∑
m

∑
q

h(m)h(q) ∑
k

Rxx(k)e− jωT (k−q+m) + Pdd(ω)

=

{
∑
m

h(m)e− jωT m
}{

∑
q

h(q)e jωT q
}{

∑
k

Rxx(k)e− jωT k
}

+ Pdd(ω)

∴ Pyy(ω) = |H(ω)|2 Pxx(ω) + Pdd(ω) (3)

as h is real.

Version: NGK/3 (TURN OVER for continuation of SOLUTION 2

8

Now look at the cross correlation function of x and y:

Rxy(p) = E{x(n)y(n−p)}

= E
{[

∑
m

h(m)x(n−p−m)+d(n)
]

x(n)
}

The image x(n) and the noise d(n) are uncorrelated and the noise has zero
mean (as before), so E {d(n)x(n)}= 0 .

∴ Rxy(p) = E
{

∑
m

h(m)x(n−p−m)x(n)
}

= ∑
m

h(m)E {x(n)x(n− [p+m])}= ∑
m

h(m)Rxx(p+m)

Taking the Fourier transform of each side gives:

Pxy(ω) = ∑
p

{
∑
m

h(m)Rxx(p+m)

}
e− jωT p = ∑

m
h(m) ∑

p
Rxx(p+m)e− jωT p

= ∑
m

h(m)e jωT m
∑
k

Rxx(k)e− jωT k where p+m = k

∴ Pxy(ω) = H∗(ω) Pxx(ω)

Substituting back into the given equation gives:

G(ω) =
H∗(ω)Pxx(ω)

|H(ω)|2 Pxx(ω)+Pdd(ω)
(4)

This is the most commonly used form of the Wiener Filter. [30%]

(b) (i) Consider the ideal filter given in fig.2 – one way to construct this
is to say that the ideal frequency response of this filter, H(ω1,ω2), can be
written as

H(ω1,ω2) = H1(ω1,ω2)+H2(ω1,ω2)+H3(ω1,ω2)

where H1 is a rectangular 2D lowpass filter given by

H1(ω1,ω2) =

1 if |ω1|< Ω and |ω2|< Ω

0 otherwise

Version: NGK/3 (cont.

9

and H2 and H3 are ideal 2D bandpass filters. H2 is formed from the product
of 1D bandpass filters in ω1 and ω2, which are each obtained by subtracting a
1D lowpass filter of bandwidth Ω from one of bandwidth 3Ω. Similarly H3 is
formed from the product of 1D filters, obtained by subtracting a lowpass filter
of bandwidth 3Ω from one of bandwidth 5Ω.

We can therefore use standard results (or derive them) to write our
impulse response of H as the sum of the impulse responses of H1, H2 and
H3 :

h(n1∆1,n2∆2) =
∆1∆2

π2 [Ω2 sinc(Ωn2∆2)sinc(Ωn1∆1)]

+
∆1∆2

π2 [3Ωsinc(3Ωn1∆1))−Ωsinc(Ωn1∆1))]×

[3Ωsinc(3Ωn2∆2)−Ωsinc(Ωn2∆2)]

+
∆1∆2

π2 [5Ωsinc(5Ωn1∆1))−3Ωsinc(3Ωn1∆1))]×

[5Ωsinc(5Ωn2∆2)−3Ωsinc(3Ωn2∆2)]

If we expand this we have

h(n1∆1,n2∆2) =
∆1∆2

π2 Ω
2[2sinc(Ωn2∆2)sinc(Ωn1∆1)

+ 18sinc(3Ωn2∆2)sinc(3Ωn1∆1)

+ 25sinc(5Ωn2∆2)sinc(5Ωn1∆1)

+ other terms]

Thus the values required are α0 = 2, α1 = 18, α2 = 25. [40%]

(ii) Clearly the filter only lets ‘diagonal’ frequencies through, and also low
frequency components which lie within the passband of the central square
region of the response. Thus we can expect this filter to pick out parts of the
image with strong ‘diagonal’ features – ie patterns which exhibit frequencies
which are simultaneously similar in both directions – as well as a generally
blurred (lowpass) version of the image.

There will be quite a lot of ringing around edges due to the sharp
transitions of the frequency response in Fig. 2. [10%]

Version: NGK/3 (TURN OVER

10

3 (a) In RGB space, colour (chrominance) and intensity (luminance) information
is spread across all 3 components, R, G and B. The transformation to YUV space
aims to separate the information into the luminance component, Y , and 2 chrominance
components, U and V . The top row of C combines 0.3R+0.6G+0.1B to give Y , as these
are the correct ratios to give a subjectively correct estimate of the apparent brightness
(luminance) of each pixel. They should add to unity so that Y = R = G = B for colourless
pixels of any shade of grey from black (0,0,0) to white (255,255,255) in RGB space.

The 2nd and 3rd rows of C must sum to zero, so that U = V = 0 when R = G = B
and the pixel is colourless. We find that U ∝ B−Y and V ∝ R−Y . Thus U and V are
known as colour-difference components in the blue and red directions.

The human eye is much more sensitive to high frequency components in Y than it
is to high frequencies in U and V ; so, in an image coder, U and V can be lowpass filtered
and sub-sampled without producing any noticeable degradation of image quality. This
saves significant bit rate when colour images are encoded. [20%]

(b) If T is a 4× 4 DCT matrix which transforms a 4-element column vector x
into a 4-vector y of transform coefficients, then y = Tx . To transform both the rows and
columns of a 4×4 patch of pixels X, we use pre and post multiplication by T and TT to
obtain

X̂ = T X TT (1)

where X̂ is a 4×4 matrix of DCT coefficients.

To transform a large image, we divide the image into non-overlapping 4×4 blocks
of pixels, and apply eq(1) to each block in turn.

To view the result we usually group equivalent pixels from all the different blocks X̂
into 4×4 = 16 separate subimages. Each subimage is 1

4 of the size of the original image
in each direction. Hence an N ×M input image produces 16 subimages, each of size
N
4 ×

M
4 pixels, with one subimage corresponding to each of the 16 coefficient locations in

X̂ . [20%]

(c) The Y image will be 2048× 1536 in size, and the U ′ and V ′ images will
each be 1024× 768 in size. The DCT subimages will be 1

4 of these dimensions in each
direction, so the 16 subimages of Y will each be of size 512×384, and the 32 submiages
of U ′ and V ′ will each be of size 256×192 .

As i and j go from 1 to 4, the sets of images on each diagonal of the 4×4 grid, such
that i+ j−1 = constant, will have the same approximate entropy. Hence we can form a

Version: NGK/3 (cont.

11

table of entropies as follows:

Diagonal
i+ j−1

No. of subimages
on the diagonal

m HY m HY HUV m HUV

1 1 6 6 6 6
2 2 3 6 1.5 3
3 3 2 6 0.667 2
4 4 1.5 6 0.375 1.5
5 3 1.2 3.6 0.24 0.72
6 2 1 2 0.167 0.333
7 1 0.857 0.857 0.122 0.122

For the luminance plane Y , assuming that the mean bit rate per coefficient is equal
to the entropy of that subband, the total no. of bits will be:

NY = 512×384× (∑mHY) = 512×384× (4×6+3.6+2+0.857)

= 512×384×30.46 = 5.989 . 106 bits

For U and V , it will be:

NUV = 2×256×192×(∑mHUV)= 512×192×(6+3+2+1.5+0.72+0.333+0.122)

= 512×192×13.675 = 1.344 . 106 bits

Hence we need approx 5.99 . 106 bits to code the luminance and approx 1.34 . 106 bits
for the two chrominance planes together.

The total number of bits to code each colour image will therefore be approx [40%]

NY +NUV = (5.99+1.34) . 106 = 7.33 . 106 bits

(d) We see that both colour components together only add about 23% to the bit-
rate for the luminance component. So it is usually well worth encoding the image in
colour, since it looks so much better and more interesting than an equivalent monochrome
image.

The low cost of colour is to be expected from knowledge of the human visual
system, because the human eye is much less sensitive to colour information, both in terms
of bandwidth and contrast sensitivity. (See fig 1.1 in the 4F8 lecture notes.) [20%]

Version: NGK/3 (TURN OVER

12

4 (a) y = T x transforms a 2-element column vector of pixels x into a 2-element
coefficient vector y as a simple sum and difference operation, scaled by 1√

2
to preserve

energy.

To transform the rows and columns of a 2×2 matrix X, we calculate

Y = T X TT

If we have the inverse of T as matrix T−1, then we can recover X from Y using

T−1 Y (T−1)T = T−1 T X TT (T−1)T = I X I = X

The important property of T is that it is orthonormal (i.e. orthogonal and normalized
for unit energy along rows or columns). The inverse of an orthonormal matrix is just its
transpose, so that T−1 = TT and TT T = I. Orthonormal transformations also preserve
energy.

Hence to recover X from Y, we just calculate

TT Y T = TT T X TT T = X

This only requires simple sum and difference operations on Y, followed by an overall
scaling by 1

2 . [15%]

(b) Y is a 2×2 matrix of transform coefs.

If X =

[
a b
c d

]
, then Y =

1
2

[
a+b+ c+d a−b+ c−d
a+b− c−d a−b− c+d

]

This is equivalent to 4 filters[
Lo-Lo Hi-Lo
Lo-Hi Hi-Hi

]
where Lo = lowpass & Hi = highpass

The 4 elements of all the different Y matrices for a large image can be split into 4
separate image subbands:

X ⇒
YLL YHL

YLH YHH

Version: NGK/3 (cont.

13

YHL, YLH , YHH all result from highpass filtering and contain much less energy
than YLL. In a multi-level transform, better energy compression is obtained if the LL
subband is passed through one or more further stages of Haar transform. Hence we get

YLL ⇒
Y2,LL Y2,HL

Y2,LH Y2,HH

and this can be continued for several stages, using Y2,LL as the input for the next stage to
obtain Y3,LL . . . Y3,HH , and so on . . .

At each stage (level) the Lo-Lo subband is subdivided into 4 further subbands, each
half the size (in each direction) of the input band for that stage.

Hence we see that after 4 levels, there are 3 bandpass subbands for each level plus
a final Lo-Lo band, giving a total of 4×3+1 = 13 subbands.

If the input image is N×N, then there will be 3 subbands of size N
2 ×

N
2 , 3 subbands

N
4 ×

N
4 , 3 subbands N

8 ×
N
8 , and 4 subbands N

16×
N
16 . These all add up to N×N coefficients,

which equals the number of input pixels and shows that the transform is non-redundant. [20%]

(c) When the Lo-Lo filters are cascaded over m levels, they simply produce coefs.
that are the scaled average of a 2m× 2m region of pixels. This produces a filter whose
point-spread function (PSF) is a 2m×2m square of uniform value, with abrupt transitions
to zero at the edges of the square. When a transformed image is encoded at a low bit-rate
by quantizing coefs., many of the smaller coefs. are set to zero. The reconstructed image
is then made up of scaled filter PSFs from only the sparse non-zero coefs. Hence if these
PSFs are square blocks, the reconstructed image will appear blocky.

To improve on the Haar transform, we observe that its sum and difference operations
can be interpreted as filtering operations where

H0(z) =
1√
2
(1+ z−1) and H1(z) =

1√
2
(1− z−1)

Wavelet transforms aim to overcome the problem of blocky artifacts by extending these
filters to higher order (more terms) so that, when cascaded across scales or levels, they
produce smoothly decaying PSFs with less abrupt boundaries. [25%]

(d) To calculate the filter products, we multiply their polynomials in z. This can
be done more easily as a discrete convolution (noting that a polynomial in z2 spaces the
terms 2 samples apart).

Version: NGK/3 (TURN OVER for continuation of SOLUTION 4

14

H0(z)×H1(z2)×16:

−z0 : 1 −2 −6 −2 1
2z−2 : −2 4 12 4 −2
−z−4 : 1 −2 −6 −2 1
Sum: 1 −2 −8 2 14 2 −8 −2 1

Similarly G0(z)×G1(z2)×16 gives:

Sum: −1 −2 −3 −4 4 12 4 −4 −3 −2 −1

To explain why these products represent level-2 basis functions, we note that the
2-level multi-rate wavelet system, below left, is equivalent to the single-rate one, below
right, in which all decimators are shifted past the filters:

x
- H1(z) -��

��
↓2 -

- H0(z) -��
��
↓2

y1

y0

- H1(z) -��
��
↓2 -

- H0(z) -��
��
↓2

y01

y00-

x
- H1(z) -��

��
↓2 - y1

- H0(z)
- H1(z2) -��

��
↓4 - y01

- H0(z2) -��
��
↓4 - y00

Hence, from the right-hand diagram, the transfer function to the level-2 wavelet
output (y01) is H0(z) H1(z2) – i.e. this is the level-2 analysis basis function. Similarly,
G1(z2) G0(z) is the level-2 reconstruction basis function. [25%]

(e) Smooth basis functions lead to reconstructed images with less visible artifacts,
since sharp discontinuities are more visible than smooth features. By inspecting the two
filter products in part (d), we see that G0(z) G1(z2) is smoother than H0(z) H1(z2),
because the output of G0(z) G1(z2) linearly interpolates between the scaled values
{−2,−4,12,−4,−2} of the filter G1(z), whereas the output of H0(z) H1(z2) has some
nasty spikes of value 14 and −8. For best coding performance we need the smooth
filters to be in the reconstruction part of the coder, so it is best if the G filters stay as
reconstruction filters. Therefore we should not swap the filters. [15%]

END OF SOLUTIONS

Version: NGK/3

