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EGT3
ENGINEERING TRIPOS PART IIB: SOLUTIONS

Monday 24 April 2017 2 to 3:30

Module 4F8

IMAGE PROCESSING AND IMAGE CODING

Answer not more than three questions.

All questions carry the same number of marks.

The approximate percentage of marks allocated to each part of a question is
indicated in the right margin.

Answers to questions in each section should be tied together and handed in
separately.

Write your candidate number not your name on the cover sheet.

STATIONERY REQUIREMENTS
Single-sided script paper

SPECIAL REQUIREMENTS TO BE SUPPLIED FOR THIS EXAM
CUED approved calculator allowed
Engineering Data Book

10 minutes reading time is allowed for this paper.

You may not start to read the questions printed on the subsequent
pages of this question paper until instructed to do so.
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1 (a) (i) Since g(u1,u2) = sin(Ω1u1)sin(Ω2u2), and Ω1 = π/8, Ω2 = π/16,
we have f1 = Ω1/(2π) = 1/16Hz and f2 = Ω2/(2π) = 1/32/,Hz. Therefore we
have a 2D sinewave with these frequencies, ie peaks in the frequency domain at
(±1/16,±1/32). Sketching this:

f1

f2

[10%]

(ii) Now suppose we instead have g(u1,u2) = sin(φ1(u1))sin(φ2(u2)). The
instantaneous frequency is given by dφ

du [if φ = Ωu then dφ

du = Ω, as expected].
Therefore:

dφ1
du1

= Ω1 +
2πu1

16
and

dφ2
du2

= Ω2 +
2πu2

32

This therefore tells us that we have a 2D ‘chirp’ with frequency increasing as u1 and
u2 increase. This is illustrated in the 2D frequency plane in the figure below.

ω1
Ω1

ω2

Ω2

[15%]

(iii) Perception of images is very much concerned with lines and edges. It can
be shown that if we discard the amplitude information present in the 2D FT of
an image, we can still reconstruct a recognisable image due to the fact that edge
information is retained in the phases of the FT. The eyes are sensitive to phase
while the ears are sensitive to amplitude.

[10%]

Page 2 of 15 (cont.



Version JL/2

(b) (i)

Gs(ω1,ω2) =
1

∆1 ∆2

∞

∑
p1=−∞

∞

∑
p2=−∞

G(ω1− p1Ω1,ω2− p2Ω2)

(ii) From the equation above, it can be seen that the Fourier transform or spectrum
of the sampled 2d signal is the periodic repetition of the spectrum of the unsampled
2d signal (centred on the ‘grid’ points in frequency space) – precisely analogous
to the 1d case. This periodic repetition of the spectrum is called aliasing. If the
image is spatially bandlimited to ΩB1 and ΩB2 then the original continuous image
can be recovered from the sampled image by ideal low-pass filtering at ΩB1, ΩB2
if the samples are taken such that ΩB1 < 1

2Ω1 and ΩB2 < 1
2Ω2 so that the periodic

repeats of the spectrum do not overlap – this can also be written as:

2π

∆1
> 2ΩB1

2π

∆2
> 2ΩB2

2ΩB1 and 2ΩB2 are known as the 2d Nyquist frequencies. Thus the 2d sampling
theorem states that a bandlimited image sampled at or above its u1 and u2 Nyquist
rates can be recovered without error by low-pass filtering the sampled spectrum.
This is illustrated in the figure below.

[10%]

(iii) If g(u1,u2) = cos(αu1 +βu2), the FT is

G(ω1,ω2) =
∫ ∫

cos(αu1 +βu2)e
− j(ω1u1+ω2u2)du1du2

Now expand the cosine term to give cosαu1 cosβu2− sinαu1 sinβu2, which then
gives:

G=
∫

cosαu1e− jω1u1du1

∫
cosβu2e− jω2u2du2−

∫
sinαu1e− jω1u1du1

∫
sinβu2e− jω2u2du2

which can be simplified as
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G = π
2 [(δ (ω1 +α)+δ (ω1 +α))(δ (ω2 +β )+δ (ω2 +β ))]+

π
2 [(δ (ω1−α)−δ (ω1 +α))(δ (ω2−β )−δ (ω2 +β ))]

= 2π
2 [δ (ω1−α)δ (ω2−β )+δ (ω1 +α)δ (ω2 +β )]

Clearly g is bandlimited.

ω1

ω2

α

β

[20%]

(iv) Nyquist frequencies are simply twice the highest (vertical and horizontal)
frequencies in the image, ie

Ωn1 = 2α Ωn2 = 2β

[10%]

(v) Sampling frequencies are given by

Ωs1 =
2π

∆1
=

2π

0.4π
= 5

Ωs2 =
2π

∆2
=

2π

0.2π
= 10

So, 5≥ 2α and 10≥ 2β , so we therefore take

α = 5/2 β = 5

[15%]

This was the least popular question. Parts a)(i)(iii) of this question were done
well by almost all candidates. Part a)(ii) caused most difficulty – it was clear that
many candidates did not know how to get instantaneous frequencies from sin φ(t) by
differentiating φ .
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Part b) was generally well done. Almost everyone who attempted this question got full
marks for the bookwork parts. Most marks were lost on part (iii) due to an inability to
integrate.

2 (a) (i) If a filter phase response is non-linear, then the various frequency
components which contribute to an edge in an image will be phase-shifted with
respect to each other in such a way that they no longer add up to produce a sharp
edge – i.e. dispersion takes place. It is often simplest to enforce the zero-phase
condition, i.e. insisting that the frequency response is purely real, so that

H(ω1,ω2) = H∗(ω1,ω2)

Thus, ensuring that our filters are zero-phase will ensure that we preserve edges –
crucial for image recognition. [10%]

(ii) Taking the inverse FT of an ideal zero-Phase 2D frequency response, H, will
normally create an impulse response with infinite support. Windowing is therefore
necessary to produce a filter with finite support. The effect of the window is to
smooth Hd , since multiplying by the window function w in the spatial domain leads
to convolving the H with the FT of w, say W ,in the frequency domain – clearly we
would prefer to have the mainlobe width of W (ω1,ω2) small so that Hd is changed
as little as possible. We also want sidebands of small amplitude so that the ripples
in the (ω1,ω2) plane outside the region of interest are kept small.

[10%]

(iii) Two methods of windowing are via the product and rotation methods.
The Product Method for obtaining a 2-D window from 1-D windows is to simply
take the product of two 1-D windows:

w(n1,n2) = w1(n1) w2(n2)

The Rotation Method of forming a 2-D window from 1-D windows is to obtain a
2-D continuous window function w(u1,u2) by rotating a 1-D continuous window
w1(u).

w(u1,u2) = w1(u)|u=√(u2
1+u2

2)

The continuous 2-D window is then sampled to produce a discrete 2-D window
w(n1,n2):
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w(n1,n2) = w(u1,u2)|u1=n1 ∆1, u2=n2 ∆2

The actual filter frequency response H(ω1,ω2) is given by the convolution of
the desired frequency response Hd(ω1,ω2) with the window function spectrum
W (ω1,ω2).

[10%]

(b) (i) If we neglect the noise in the equation y = h∗ x+n, we are left with

y(n1,n2) = ∑
m1

∑
m2

h(m1,m2)x(n1−m1,n2−m2)

Since the relationship between x and y is a 2-D convolution, a straightforward
approach to the problem of reconstruction is to take the Fourier transform of each
side of the above to give:

Y (ω1,ω2) = H(ω1,ω2)X(ω1,ω2)

where: H(ω1,ω2) = ∑
∞
n2=−∞ ∑

∞
n1=−∞ h(n1,n2)e− j(ω1n1+ω2n2)

∴X(ω1,ω2)=
Y (ω1,ω2)

H(ω1,ω2)
and x(n1,n2)=

1
(2π)2

∫
π

−π

∫
π

−π

X(ω1,ω2)e
j(ω1n1+ω2n2)dω1dω2

Thus, if we neglect noise and know the psf, h, we can estimate our true image by
a process known as inverse filtering, which, as we see above, involves dividing the
fourier transform of the observed image by the fourier transform of h – the inverse
filter is therefore 1/H.

[10%]

(ii) At time t the object will have moved a distance vt in the u1 direction. If the
shutter is open for T seconds, the camera will effectively ‘sum’ all of these images
to produce a blurred image given by

y(u1,u2) =
∫ T

0
x(u1− vt,u2)dt
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[15%]

(iii) Let P(u1) be the pulse given by

P(u1) =

{
1/v 0 < u1 < vT
0 otherwise

Now, if we let τ = vt in the above convolution, we get:

y(u1,u2) =
∫ vT

0
x(u1− τ,u2)

1
v

dτ

which we can write as

y(u1,u2) =
∫

∞

−∞

x(u1− τ,u2)P(τ)dτ = P(τ)∗ x

Thus the filter h makes no changes in the u2 direction but is equal to P in the u1
direction.

[20%]

(iv) For this part of the question a number of answers were acceptable. If we
neglect noise, then since we have a convolution, the simplest deblurring filter would
be the inverse filter as discussed in part (i). ie the simplest deblurring filter would
be 1/P. One could then add more robustness by discussing the generalised inverse
filter. [15%]

(v) All inverse filters perform poorly in the presence of significant noise –
improved performance can be achieved via the Weiner filter, g, whose spectrum
is given by

G(ω) =
Pxy(ω)

Pyy(ω)
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G is the optimal filter amongst the class of linear filters – the derivation minimises
the sum of residuals. However, if we allow non-linear filters, meaning we generally
need to solve via iterative methods, we can often get far superior results. Two
common non-linear methods are the Maximum Entropy and Pixon methods.

This question had the lowest average on the paper. Part (a) was mostly bookwork and
almost all answers were very good. Part (b) was mostly straightforward, though parts (iii)
and (iv) required some thinking outside the lecture notes, so drew the majority of the
errors.
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3 (a) Energy compression: compresses most of the input energy into a small
proportion of the coefficients.

Quantiser: quantised the coefficients so that many of them become zero, because of
energy compression.

Entropy coding: converts the spares integers into a binary data stream, using entropy
coding to acheive the lowest mean bit rate consistent with lossless transmission of the
quantised integers.

The 3 decoder blocks invert these processes and reconstruct the decoded image.
Information is lost only in the quantiser.

[20%]

(b) If T is orthonormal, then the inverse of T is its transpose, ie T T T = T T T = I. Also
the energy normalisation of each row of T means that the energy of an input vector x, is
preserved in the transformed vector y = T x, and vice versa. This means that quantising
noise added to the coefficient y is equivalent to adding the same energy of noise to x.

To transform the columns of a square matrix X , we calculate T X , and then to transform the
rows of the result, we calculate (T X)T T . Hence for a 2D transform we have Y = T XT T .

To reconstruct X we compute

T TY T = T T T XT T T = IXI = X

[20%]

(c) To show that T is orthonormal, we must show that t jtT
k = 0 if j 6= k, where t j is the

jth row of T . We must also show that t jtT
j = 1 for all j.

t1tT
2 = ab+ac−ac−ab = 0

t1tT
3 = a2−a2−a2 +a2 = 0
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t1tT
4 = ac−ab+ab−ac = 0

t2tT
3 = ba− ca+ ca−ba = 0

t2tT
4 = bc− cb− cb+bc = 0

t3tT
4 = ac+ab−ab−ac = 0

t1tT
1 = 4a2 = 1

t2tT
2 = 2b2 +2c2 = 2

1
2
(cos2(π/8)+ sin2(π/8) = 1

t3tT
3 = 4a2 = 1

t4tT
4 = 2b2 +2c2 = 1

Hence T is orthonormal (unitary).

The inverse 2D DCT is X = T TY T . The basis function for y1,1 is the X that results from
y1,1 = 1 and all other elements of Y being zero. This is therefore tT

1 t1 as y1,1 selects the
first column of T T and the first row of T , similarly, yi, j selects tT

j ti.

Thus:
tT
1 t1 = [a,a,a,a]T [a,a,a,a]

ie all elements are a2

tT
2 t1 = [b,c,−c,−b]T [a,a,a,a]

ie all columns are the same
tT
1 t2 = [tT

2 t1]
T

ie all rows are the same

tT
2 t2 = [b,c,−c,−b]T [b,c,−c,b]

[20%]

(d) Since a,b,c are all positive and b� c, we see by inspection that the rows of T are
gradually increasing in frequency from top to bottom row. The form of the remaining basis
functions are products of increasing vertical frequency from right to left and increasing
horizontal frequency from top to bottom of the form tT

j ti.

Images of the real world have strong correlations between nearby pixels, and so they tend
to have much more energy at low frequencies than at high frequencies.

The basis functions for yi, j contain frequencies proportional to i horizontally and j
vertically, so the energy (and entropy) tend to decrease roughly as a function of (i+ j).

[20%]
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(e) The contrast sensitivity of the human visual system tends to decrease as the spatial
frequency of the input image increases. Therefore we can use coarser quantisation of
coefficients yi, j as the frequency content of the (i, j) basis function increases. Hence the
quantiser step size may be increased as (i, j) increases. This tends to reduce the entropy
of the coded data for the higher frequency basis functions and gives a a lower overall data
rate for the encoded data, for a given level of perceived image distortion.

[20%]

This was the second most popular question, which was well done. The question was
predominantly bookwork, though some candidates nevertheless struggled with doing all
the necessary calculations in part (c).
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4 (a) See figure below, where the left hand side is the Analysis filter bank and the
right hand side is the Reconstruction filter bank.

H0(z) and G0(z) are lowpass filters and H1 and G1 are highpass filters.

If the filter outputs Y0 adn Y1 were not downsampled, there would be a 2:1 redundancy
introduced by the two filters H0 and H1. Since H0 and H1 each reduce the bandwidth of
X by approx 1/2, we can afford to downsample y0 and Y1 by 1/2 so that the total sample
rate of y0 and Y1 remains the same as X . Redundancy is not good when we are trying to
achieve data compression. [20%]

(b) Consider the data samples yn with z-transform

Y (z) =
∞

∑
n=−∞

ynz−n

If yn is downsampled by 2 and then upsampled by 2 to give ŷn, then the z-transform of ŷn

will be:

Y0(z) = ∑
evenn

ynz−n

= ∑
alln

1
2
[
ynz−n + yn(−z)−n]

=
1
2 ∑

n
ynz−n +

1
2 ∑

n
yn(−z)−n

=
1
2

Y (z)+
1
2

Y (−z)

=
1
2
[Y (z)+Y (−z)]

.

[15%]
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(c) Applying the result in (b) to the filterbank of (a) we have

Y0(z) = H0(z)X(z) and Y1(z) = H1(z)X(z)

Ŷ0(z) =
1
2
[Y0(z)+Y0(−z)] and Ŷ1(z) =

1
2
[Y1(z)+Y1(−z)]

and

X̂(z) = G0(z)Ŷ0(z)+G1(z)Ŷ1(z)

Combining these expressions we have:

X̂(z) =
1
2

G0(z) [H0(z)X(z)+H0(−z)X(−z)]+
1
2

G1(z) [H1(z)X(z)+H1(−z)X(−z)]

=
1
2

X(z) [G0(z)H0(z)+G1(z)H1(z)]+
1
2

X(−z) [G0(z)H0(−z)+G1(z)H1(−z)]

For antialiasing, the X(−z) term must be zero and so we require that

G0(z)H0(−z)+G1(z)H1(−z) = 0

For perfect reconstruction, the X(z) term must be multiplied by unity, so we require that

G0(z)H0(z)+G1(z)H1(z) = 2

[20%]

(d) the figures below show the 2-level wavelet transforms for 1D signals and 2D signals;
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At scale 1, y00 is the result of lowpass filtering in both directions (row and column), and
it picks out the mean brightness over roughly a 2×2 region. y01 is the result of lowpass
filtering along rows and highpass filtering down columns, so it picks out near-horizontal
edges. Similarly, y10 picks our near-vertical edges. y11 is the result of highpass filtering in
both directions and picks out corners, small dots and high frequency textures (eg grass).
We get similar features picked out at larger scale by the four scale 2 outputs, y00,00 to
y00,11.

[25%]

(e) The outputs of the above 2D wavelet transform may be inverted in order to
reconstruct the image x by a mirror image of the above diagram based on reconstruction
filter banks in which the H filters are replaced by equivalent G filters and the
downsamplers by upsamplers.

If the G and H filters form a perfect reconstruction (PR) set by satisfying the conditions of
part (c), then each pair of outputs above may be used to reconstruct the input to that pair
of H filters, and so the whole process of the 2D wavelet transform may be easily inverted,
to create a 2D inverse wavelet transform.

Compression artefacts from a wavelet-based image coding system tend to be less visible
if the reconstruction lowpass filter (G0) is as smooth as possible. The H0 filter is less
critical in this respect, although it should also be relatively smooth. Hence we should
allocate factors of the product filter H0(z)G0(z) so that G0(z) is as smooth as possible
while still preserving the PR property of the system.

[20%]

This was the most popular question – and the candidates chose wisely, as it was also the
question with the highest average. All parts were essentially bookwork and were done
well by most. The majority of errors were as a result of not reading the question properly.
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END OF PAPER
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