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1 (a) (i) Taking the inverse FT of the ideal frequency response will give an
impulse response which does not have finite support – to remedy this we multiply
by a window function which forces the impulse response coefficients to zero for
(n1,n2) outside Rh, the desired support region. The actual filter frequency response
H(ω1,ω2) is then given by the convolution of the desired frequency response
Hd(ω1,ω2) with the window function spectrum W (ω1,ω2).

This is exactly as we should expect since we multiply in the spatial domain and
must therefore convolve in the frequency domain.

Thus the effect of the window is to smooth Hd – clearly we would prefer to have
the mainlobe width of W (ω1,ω2) small so that Hd is changed as little as possible.
We also want sidebands of small amplitude so that the ripples in the (ω1,ω2) plane
outside the region of interest are kept small.

The two most popular methods of forming 2d windows from 1d windows are

A. Taking the product of 1d windows:

w(u1,u2) = w1(u1) w2(u2)

B. Rotating a 1d window:

w(u1,u2) = w1(u)|u=
√
(u2

1+u2
2)

This first part was mainly bookwork and almost all candidates gave reasonable
answers.

(ii) The 1D window function w given is a triangular window of height (at (0,0))
1 and width 2U .

Thus the 2D window function, W , formed by the rotation method from w is a ‘cone’
of height 1 and maximum radius U – sketch below:
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While many candidates produced the required sketch, some produced poor 2d
versions.

(iii) Now we want to directly integrate to form the Fourier transform of W .

W (ω1,ω2) =
∫

∞

−∞

∫
∞

−∞

W (u1,u2)e
− j(ω1u1+ω2u2)du1 du2

given the form of W , we make a change of variables from (u1,u2) to (r,θ) to give
(noting that du1du2 = r dr dθ )

W (ω1,ω2) =
∫ U

r=0

∫
π

θ=−π

r
(

1− r
U

)
e− jr

√
ω2

1+ω2
2 sin(θ+φ)

dr dθ

with tanφ = ω1/ω2. Next, expand the complex exponential in terms of sin and cos
and argue that the periodicity of sin makes the imaginary part of the integral zero.
Using the fact that we can change the limits on the θ integral and the definition of
the Bessel function, as given in the lectures, the integral reduces to

W (ω1,ω2) = 2π

∫ U

r=0
r
(

1− r
U

)
J0(r

√
ω2

1 +ω2
2 )dr

So that f (ω1,ω2) =
√

ω2
1 +ω2

2 .

This was the part which caused most problems – while it is essentially bookwork,
you do need to remember how to handle the integration to produce a Bessel function.
A good number of candidates just left this part of the question out.

(iv) In Fig.1 we see that as ω =
√

ω2
1 +ω2

2 increases the two terms in the integral
tend to the same value, so when subtracted they give zero. This tells us that the
spectrum of this rotated window will have very low sidelobes and will thus behave
well under convolution. The window will therefore have good behaviour as regards
artefacts. The mainlobe is reasonably wide, which is a less good feature.
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The answers to this last part of (a) were largely correct, though some candidates
also came to the conclusion that the width of the mainlobe was good.

(b) (i) Consider the ideal filter given in fig.2 – one way to construct this is to say that
the ideal frequency response of this filter, H(ω1,ω2), can be written as

H(ω1,ω2) = H1(ω1,ω2)+H2(ω1,ω2)

where H1 is a rectangular lowpass filter given by

H1(ω1,ω2) =

1 if |ω1|< Ω and |ω2|< Ω

0 otherwise

and H2 is an ideal bandpass filter given by H2 = Hu−Hl :

Hu(ω1,ω2) =

1 if |ω1|< 5Ω and |ω2|< 5Ω

0 otherwise

Hl(ω1,ω2) =

1 if |ω1|< 3Ω and |ω2|< 3Ω

0 otherwise

We can therefore use standard results (or derive them) to write our impulse response
of H as the sum of the impulse responses of H1 and H2.

h(n1∆1,n2∆2) =
∆1∆2

π2 [Ω2 sinc(Ωn2∆2)sinc(Ωn1∆1)]

+
∆1∆2

π2 [5Ωsinc(5Ωn1∆1)5Ωsinc(5Ωn2∆2))−3Ωsinc(3Ωn1∆1)3Ωsinc(3Ωn2∆2)]

if we expand this we have that the values required are γ1 = 1, γ2 = −9, γ3 =

25, α1 = β1 = 1, α2 = β2 = 3, α3 = β3 = 5.

Most candidates used standard results, though some integrated, and most did get
the correct answers. The most common mistake was to use 2,6,and 10 in the sincs,
rather than the half widths, 1,3,5.

(ii) Clearly the given filter is a combination of a lowpass and a bandpass filter –
the resulting image will have most high frequencies removed, but will display areas
of medium frequency corresponding to the alternative bandpass region.

An easy end to the question which most people answered correctly.
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2 (a) (i) The likelihood is obtained by using the fact that the noise is Gaussian:

P(y|x) ∝ e−
1
2dT N−1d = e−

1
2 (y−Lx)T N−1(y−Lx)

[10%]

This part was mostly well done, though a good number left the likelihood just in
terms of the noise.

(ii) Again, using the fact that we can regard x as a Gaussian random variable:

P(x) ∝ e−
1
2xTC−1x

From Bayes’ theorem,

P(x|y) ∝ P(y|x)P(x)

which is then given by

P(x|y) ∝ e
−1

2

[
(y−Lx)T N−1(y−Lx)+xTC−1x

]
We obtain the Wiener filter result by looking for a W such that x̂ =Wy is the value
of x that minimizes the exponent above. [20%]

Most candidates were able to obtain the correct expression of the posterior, but
many did not seem to understand what was being asked for in the last part (i.e.
qualitatively explain how the Wiener filter is obtained).

(b) (i) We write down the posterior as proportional to the likelihood and the prior:

P(x|y) ∝ exp

(
−1

2
[

1
σ2 ∑

i
(yi− xi)

2 +λ ∑
i

x2
i ]

)
Differentiate the RHS wrt xi to give

[
1
−σ2 (yi− xi)+λxi

]
exp

(
−1

2
[

1
σ2 ∑

i
(yi− xi)

2 +λ ∑
i

x2
i ]

)
Setting this to zero gives

x̂i =
yi

λσ2 +1

which is our best estimate of the underlying image. [25%]

Page 5 of 14 BAD PAGEBREAK



Version JL/2

(ii) In this case our posterior (note that the xi can only take positive or zero values)
is given by

P(x|y) ∝ exp

(
−1

2

[
1

σ2 ∑
i
(yi− xi)

2 +2µ ∑
i

xi

])
Again, differentiate wrt xi and set to zero, to give

− 1
σi
(yi− xi)+µ = 0

So that xi = yi−µσ2 or zero if RHS is negative (xi cannot be negative). [35%]

(iii) It is clear that the Wiener result simply scales all image pixels by a constant
amount. However, the CS result succeeds in setting a number of pixels to zero, and
hence sparsity has certainly been encouraged. [10%]
This was not a popular question, as it looked different from standard questions in
previous years. However, it was easy if you knew what you were doing, and many
people got full marks on part b).
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3 (a) (i) YUV has been the colour encoding system used for analogue television
worldwide (PAL, NTSC, SECAM standards). There is a very simple conversion
from RGB to YUV (values are approximate):

Y = 0.3R+0.6G+0.1B
U = 0.5(B−Y )
V = 0.625(R−Y )

Y is a luminance component and U,V are chrominance components. This can then
be written in matrix form.

A surprising number did not know this transform, but most did get the general ideas,
particularly how Y is expressed in terms of R,G,B.

(ii) This sketch shows the sensitivity of the eye to luminance and chrominance
intensity changes (V = R-G, U = B-Y).

Note: the eye has very little response above 100 cycles/degree; luminance
sensitivity drops off at low spatial frequencies; maximum chrominance sensitivity
is much lower than maximum luminance sensitivity; chrominance sensitivitites fall
off above 1 cycle/degree. This means that U and V components can be sampled at
a lower rate than Y (due to the narrower bandwidth), and may be quantised more
coarsely (due to the lower contrast sensitivity).

This question was not well done. There were lots of variants of this graph. The
implications of this graph were also poorly explained on the whole.

(b) The figure below shows the main blocks in any image coding system. x is a
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monochrome Y ) image. Elements of x are x(n) ≡ x(n1,n2), where n1 runs over rows
and n2 runs over columns. The Binary Data is the transmitted data.

Almost everyone got full or close to full marks on this part.

(c) (i) The 2×2 Haar transformation matrix T acts on a length 2 vector x to produce
a length 2 vector y:[

y1
y2

]
= T

[
x1
x2

]
where T =

1√
2

[
1 1
1 −1

]

Note that T = T T , so that

T T T =
1
2

[
1 1
1 −1

][
1 1
1 −1

]
=

[
1 0
0 1

]
Thus T is orthonormal. Since

(Energy of y) = yT y = xT T T T x = xT Ix = xT x = (Energy of x)

we see that T is an energy preserving transform.

Mostly well done. Though more than a handful wrote down an incorrect Haar
matrix.

(ii) To apply T to a 2× 2 matrix, M, we first act on columns then on rows, via
T MT T . Now take the TL, TR, BL, BR 2×2 blocks of X and transform:
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YT L = T

[
1 1
1 1

]
T T =

[
2 0
0 0

]

YT R = T

[
0 0
0 0

]
T T =

[
0 0
0 0

]

YBL = T

[
3 0
1 2

]
T T =

[
3 1
0 2

]

YBR = T

[
1 2
3 0

]
T T =

[
3 1
0 −2

]

Surprisingly, there were lots of mistakes and careless errors in this part. The
question on the whole was the most popular question, but also the question with
the lowest average.

(iii) From these Yis we then take all top LH entries and form a 2×2 matrix which
will form the top LH corner of the 4× 4 image Y , and similarly for other entries.
This gives:

Y =


2 0 0 0
3 3 1 1
0 0 0 0
0 0 2 −2


The top LH corner is the Lo-Lo image (lowpass in both directions). The top RH
corner is Hi-Lo image (horizontal highpass, vertical lowpass). The bottom RH
corner is Lo-Hi image (horizontal lowpass, vertical highpass). The bottom RH
corner is Hi-Hi image (horizontal highpass, vertical Highpass).

Most candidates understood the process of forming the subband images, but
suprisingly many simply explained how to do it without actually giving the new
4×4 block Y .

(iv) After the first (level-1) Haar transform, we take the resulting Lo-Lo image
(which will have statistics similar to the original image) and apply the Haar
transform again to this, producing a further 4 (level-2) subimages. The level 2
Lo-Lo subimage is then transformed yet again to produce 4 level-3 subimages etc.
We can do this as the Lo-Lo subimages contain most of the image energy – the
performance when we quantise these subimages and reconstruct is much better
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than simply quantising the original image. Typically there is no improvement in
compression performance after 4 levels of the Haar transform.

This last part was well done by almost all who attempted it.
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4 (a) (i) If ti is the ith row of the n×n DCT matrix T ,

t1 · t1 = ∑
i

t1it1i =
1
n

n = 1

and

t1 · t1 =
2
n

n

∑
i=1

cos2

(
π(i− 1

2)(k−1)
n

)
=

1
n

n

∑
i=1

[
1+ cos

(
2π(i− 1

2)(k−1)
n

)]

= 1+
1
n

n

∑
i=1

cos

(
2π(i− 1

2)(k−1)
n

)

for n even, cos
(

2π(i−1
2 )(k−1)
n

)
= −cos

(
2π([n/2+1−i]−1

2 )(k−1)
n

)
so all the terms

in the sum cancel, verifying that the rows square to 1.
For t j · tk, j 6= k, we have

t j · tk =
2
n

n

∑
i=1

cos

(
π(i− 1

2)( j−1)
n

)
cos

(
π(i− 1

2)(k−1)
n

)
When we take the transform of an n-point vector using y = T x, x is decomposed

into a linear combination of the basis functions (rows) of T , whose coefficients are
the samples of y, because x = T T y and therefore

x = T T y = y1t1 + y2t2 + .....+ yntn

since tk is the kth row of T and therefore the kth column of T T .

=
1
n

n

∑
i=1

cos

(
π(i− 1

2)( j+ k−2)
n

)
+ cos

(
π(i− 1

2)( j− k)
n

)
= 0

sincecosAcosB = (1/2)(cos(A+B)+ cos(A−B) and the sum of each term is zero
for the same reasons as stated previously.
The matrix is therefore orthogonal for n even

(ii) When we take the transform of an n-point vector using y = T x, x is
decomposed into a linear combination of the basis functions (rows) of T , whose
coefficients are the samples of y, because x = T T y and therefore

x = T T y = y1t1 + y2t2 + .....+ yntn

Page 11 of 14 BAD PAGEBREAK



Version JL/2

since tk is the kth row of T and therefore the kth column of T T . The ti can therefore
be viewed as basis functions as any x can be written in terms of them.
A sketch of these basis functions is given below:

(iii) An 8×8 DCT in 2-D transforms a subimage, X , of 8×8 pixels into a matrix,
Y , of 8×8 DCT coefficients.Y is given by:

Y = T XT T

.
Since this means X = T TY T , we see that we can write X as:

X = ∑
i, j

Yi jMi j = Y11M11 +Y12M12 + ....

where Mpq = tT
p tq, which are therefore our 2D basis functions.

(b) (i) Y =⇒ 1024×2048 = 221 pixels.
U,V =⇒ (1024/2)× (2048/2) = 219 pixels.
ie we assume that we downsample U,V by a factor of 2 in each dimension (if
candidates use another reasonable factor, this is also OK).
Therefore the number of bits required is approximated by the entropy×No.pixels.
For Y : 1.2×221, for U,V : 2×0.5× 1

4 ×221.
Therefore total number of bits required is : 1.45×221 = 3.04×106.
The proportion of the total bits needed to encode the U,V channels is

0.25
1.45

≈ 17.2%

.

...a small fraction of the total.
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(ii) After DCT compression (usually 1 level) the DCT coefficients are quantised
with an optimised quantisation step – these are predetermined, and are tailored
for each subband via experiment with many natural images (see luminance and
chrominance quantisation matrices in notes). Then the entropy coding scheme
combines run-length and amplitude information into a single Huffman code.

END OF PAPER
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