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Examiners comments on Q1. Popular question mostly done very well. The primary difficulty 
was in  part (a) where some students did not understand how to use the phase  function to 
get the PDE for k. There were also some imaginative attempts at  getting the dispersion 
pattern in part (d). 







Examiners comments on  Q2. Popular question mostly done well. The weakest part was 
part (b) where  the manner in which superposition needs to be used to construct the 
Green's  function was often rather vague. 



3 A uniform inextensible chain, of length l, and mass m, hangs under gravity between
two fixed pegs which are a horizontal distance L < l apart.

(a) If the chain is parameterized by an intrinsic arc-length coordinate −l/2 < s < l/2,
show that the total gravitational potential energy of the chain is

V =
mg
l

∫ l/2

−l/2

(∫ s

−l/2
sin(θ(s′))ds′

)
ds,

where θ(s) is the angle the chain at s makes with the horizontal.

The chain has mass per unit length ρ = m/l.

Using GPE=mgh, the potential for an increment of chain ds is:

dV = ρdsgy(s) =
mg
l

y(s)ds.

Integrating along the chain gives the total potential energy

V =
mg
l

∫ l

0
y(s)ds.

For the same increment of chain ds the change in y is

dy = dssinθ .

so the total height of the chain at s is

y(s) =
∫ s

−l/2
sin(θ(s′))ds′.

Putting these two results together, the total gravitational potential energy is

v =
mg
l

∫ l/2

−l/2
y(s)ds =

mg
l

∫ l/2

−l/2

(∫ s

−l/2
sin(θ(s′))ds′

)
ds

(b) Find two integral constraints on the function θ(s), which ensure the chain hangs
between the pegs? [10%]

The chain needs to arrive at the second peg, so we need

x(l/2) = x(−l/2)+L

and
y(l/2) = y(−l/2).

In terms of θ(s), the second of these constraints is∫ l/2

−l/2
sin(θ(s))ds = 0



and, by analogy, the first is ∫ l/2

−l/2
cos(θ(s))ds = L.

(c) By minimizing the constrained potential energy, show that the chain adopts the form

θ = tan−1(As)

and explain what sets the value of A. You do not need to actually find the value of A.

Using Lagrange multipliers, we need to minimize

V =
mg
l

∫ (∫ s

−l/2
sin(θ(s′))ds′

)
ds+λ1

∫ l/2

−l/2
sin(θ(s))ds+λ2

(∫ l/2

−l/2
cos(θ(s))ds−L

)
.

V =
∫ l/2

−l/2

[
mg
l

(∫ s

−l/2
sin(θ(s′))ds′

)
+λ1 sin(θ(s))+λ2

(
cos(θ(s))− L

l

)]
ds.

Integrating the first term by parts, we get

V =
∫ l/2

−l2/
−mg

l
ssin(θ(s))+λ1 sin(θ(s))+λ2

(
cos(θ(s))− L

l

)
ds.

Minimizing this function with respect to θ(s), we get

0 =−mg
l

scos(θ(s))+λ1 cos(θ(s))−λ2 sin(θ(s)),

which we solve for θ(s), to get

tanθ =
λ1−

mgs
l

λ2
.

On symmetry grounds, we know θ(0) = 0, giving λ1 = 0, so we have

tanθ =−mgs
λ2l
≡ As.

To find A we need to find λ2, which we would do from by implementing the x constraint∫ l/2

−l/2
cos(θ(s))ds = L.

(d) A second inextensible chain, which also has length l, and mass total m, is hung
between the pegs. However, this chain has a non-uniform mass per unit length ρ(s).
What function, ρ(s), is required for the chain to hang in the arc of a circle with radius R.

The potential energy for a varying density chain is

V =
∫ l/2

−l/2

[
gρ(s)

(∫ s

−l/2
sin(θ(s′))ds′

)
+λ1 sin(θ(s))+λ2

(
cos(θ(s))− L

l

)]
ds.



Now when we integrate by parts we get:

V =
∫ l/2

−l/2
−g
[∫ s

−l/2
ρ(s′)ds′

]
sin(θ(s))+λ1 sin(θ(s))+λ2

(
cos(θ(s))− L

l

)
ds,

and when we minimize on θ(s) we get:

0 =−g
[∫ s

−l/2
ρ(s′)ds′

]
cos(θ(s))+λ1 cos(θ(s))−λ2 sin(θ(s)),

For the arc of a circle of radius R we need the energy to be minimized by

θ(s) =
s
R
.

Substituting and rearranging, we get

g
∫ s

−l/2
ρ(s′)ds′ = λ1−λ2 tan(s/R).

Differentiating with respect to s gives the form of the density:

ρ(s) =−λ2
gR

sec2(s/R).

To fix λ2, we need the total mass of the chain to be m∫ l/2

−l/2
ρ(s)ds =−2λ2

g
tan
(

l
2R

)
= m

so the final answer is:

ρ(s) =
m
2R

cot
(

l
2R

)
sec2

( s
R

)
.



Examiners comments on Q3. An unpopular question with a low average. Most candidates 
did well at (a) and (b). Part (c) was poorly answered, with very few candidates applying 
integration by parts. Not a single candidate made a serious attempt on  (d), and the mark 
scheme was adjusted to bring most of these marks forward to earlier parts of the question. 



4 (a) Evaluate the following quantities, which are written using (three dimensional)
index notation.

δi jδi j

This is one whenever i and j are the same, and zero otherwise, so it sums to three.

δi jδi j = 3

εi jkεlmnεi jkεlmn

This is equivalent to
(εi jkεi jk)

2

εi jkεi jk is one when ijk are cyclic (three possibilities) or anticyclic (three possibilities) so
sums to 6.

Therefore
εi jkεlmnεi jkεlmn = 36

εi jkεr jk

Here i and r are free indices. If they are equal, the object is one for ijk=rjk cyclic (once)
or anti-cyclic (once).

If they are not equal, one of the two epsilons is always zero, because if i 6= j 6= k then j
or k must be equal to r.

Hence

εi jkεr jk = 2δir

(b) (i) Compute, from first principles, DI(y(n))[z], the directional derivative of the
functional given by:

I =
∫ 1

0

(
dny
dxn

)2
dx.

By the definition of the directional derivative

DI(y(n))[z] = lim
ε→0

1
ε

(∫ 1

0

(
dny
dxn + ε

dnz
dxn

)2
dx−

∫ 1

0

(
dny
dxn

)2
dx

)

DI(y(n))[z] = lim
ε→0

1
ε

∫ 1

0
2

dny
dxn ε

dnz
dxn +O(ε2)dx



DI(y(n))[z] =
∫ 1

0
2

dny
dxn

dnz
dxn dx

(ii) Find the differential equation and boundary conditions that y(x) must satisfy to
minimize I. [20%]

We now need to integrate by parts n times. First doing it once

DI(y(n))[z] =
∫ 1

0
−2

dn+1y
dxn+1

dn−1z
dxn−1 dx+2

dny
dxn

dn−1z
dxn−1

∣∣∣∣1
0

then doing it n−1 more times, we get

DI(y(n))[z] =
∫ 1

0
2(−1)n d2ny

dx2n z dx+
n−1

∑
i=0

2
dn+iy
dxn+i

dn−1−iz
dxn−1−i

∣∣∣∣1
0

Setting the directional derivative of this integral to zero, the governing equation is

d2ny
dx2n = 0

and, from the boundary terms, we see the boundary conditions will be

diy
dxi

∣∣∣∣
0
= 0

diy
dxi

∣∣∣∣
1
= 0

for i = n,n+1,n+2.....2n−1

(ii) Find the set of functions y(x) that minimize I subject to the constraint∫ 1

0
y(x)dx = 1,

and find the minimum value of I.

We use a Lagrange multiplier to implement the constraint, considering the new functional

I +λ

(∫ 1

0
y(x)dx−1

)
Setting the directional derivative of this integral to zero, we now need

2(−1)n d2ny
dx2n +λ = 0

which, integrating 2n times, is solved by

y =
2n

∑
i=0

Aix
i



where Ai are constants of integration, except A2n which is a constant from the particular
integral proportional to λ .

The boundary terms from the directional derivative have not changed, so we still need

diy
dxi

∣∣∣∣
0
= 0

diy
dxi

∣∣∣∣
1
= 0

for i = n,n+1,n+2.....2n−1

The x=0 boundary conditions require Ai = 0 for i = n,n+1...2n−1.

The x=1 boundary conditions are then all satisfied provided A2n = 0.

The minimizing set of functions is thus

y =
n−1

∑
i=0

Aix
i

Finally we use the constraint to fix A0, giving the final form for the set of functions as

y(x) = 1−
n−1

∑
i=1

Ai
i+1

+
n−1

∑
i=1

Aix
i,

where the constants Ai can take any value.

This makes good sense because, with this set of functions, the value of I is zero.



Examiners comments on Q4. Popular question mostly done well. Many candidates scored 
full marks on the index notation section. Many candidates correctly identified the 
differential equation in (b)(ii) but surprisingly few also identified the correct boundary 
conditions, often instead imposing clamped/Dirichlet conditions without justification. 
Complete  answer’s to (b)(iii) were rare. 
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