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Q1 

(a) Mass defect     

€ 

Δm = 89.907152 − 89.904703 = 0.002449 u  

 1 u 

€ 

= 931.5 MeV  (4M16 Data Sheet page 1) 

     

€ 

∴ Energy released = 0.002449 × 931.5 = 2.281MeV  [5%] 

(b)     

€ 

A = λN  

   
    

€ 

λ =
ln 2
T1/2

=
ln 2

64.05 × 3600
= 3.006 ×10−6 s−1 

 

€ 

N =
ML
m

 where M is the mass (1 kg here), m is the molar mass and L is Avogadro’s number. 

  
    

€ 

∴ N =
1× 6.022 ×1026

89.9
= 6.699 ×1024 kg−1 

      

€ 

∴ a = 3.006 ×10−6× 6.699 ×1024 = 2.014 ×1019 Bq kg−1 [10%] 

(c) The volume of a bead is     

€ 

Vb = 4
3πRb

3 

 The volume of 90Y contained within the bead is 

      

€ 

VY = 0.05Vb = 0.2
3 πRb

3 

 The mass of 90Y contained within the bead is therefore 

      

€ 

MY = ρVY = 0.2
3 πρRb

3 

 where 

€ 

ρ  is the density of yttrium. 

  
    

€ 

∴ MY = 0.2
3 π× 4.742 ×103 ×

25
2
×10−6⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 

3
=1.940 ×10−12 kg  

 Hence the maximum possible activity (before any of the 90Y has had a chance to decay) is 

      

€ 

Amax = aMY  

 where a is specific activity calculated in (b). 

      

€ 

∴ Amax = 2.014 ×1019 ×1.940 ×10−12 = 39.07 ×106 Bq  [15%] 

(d) The half-life of 90Y is comparatively short, so it is reasonable to assume that all the remaining 
(at the time of deployment) 90Y will decay in situ. The total number of decays is therefore 
equal to the number of 90Y atoms remaining at the time of deployment, which is 10% of the 
initial number, if the activity has reduced since manufacture as stated in the question. 

 Therefore, using the value of     

€ 

MY  calculated in (c): 

  
    

€ 

NY-90 = 0.1×
MY L

m
= 0.1×

1.940 ×10−12 × 6.022 ×1026

89.9
=1.30 ×1012  

 Neglecting the (small) shielding effect of the bead (a conservative assumption, so the dose 
will be overestimated), assume that all the energy associated with these decays is absorbed in 
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surrounding tissue (a reasonable assumption given the short penetration range of β radiation 
in tissue). 

 Using the average energy of 90Y β radiation (0.94 MeV), the energy deposited is 

      

€ 

J =1.30 ×1012 × 0.94 ×1.602 ×10−13 = 0.196 J  

 Assume that the radiation is emitted isotropically and therefore is absorbed within a sphere 
the radius of which is the maximum range of 90Y β radiation in tissue (11 mm). 

 Taking the density of tissue to be that of water (  

€ 

103 kgm−3) and neglecting the (small) 
volume occupied by the bead, the mass of tissue irradiated is 

  
    

€ 

M t = 4
3πρt Rt

3 = 4
3π ×103 × 11×10−3[ ] 3 = 5.575 ×10−3 kg 

 The absorbed dose is therefore 

  
    

€ 

D =
J

Mt
=

0.196
5.575 ×10−3 = 35.2 Jkg−1 or 35.2 Gy  

 As     

€ 

WR = 1 for β radiation, the equivalent dose 

      

€ 

HT =WRD = 35.2 Sv  [40%] 

(e) Using the energy deposited by one bead value from (d), the total energy deposited in the liver 
is 

      

€ 

J liver = NbeadsJ =103 × 0.196 =196 J  

      

€ 

∴ Dliver =
J liver
M liver

=
196
1.35

=145.2 Gy
 

      

€ 

∴ HT liver =WRDliver =1×145.2 =145.2 Sv  
      

€ 

∴ E liver =WT HT liver = 0.05 ×145.2 = 7.26 Sv  [10%] 

(f) The effective dose calculated in (e) is significant. For comparison, the annual dose limit from 
occupational use of radiation for members of the UK general public is 1 mSv. A 7 Sv dose 
has the potential to do considerable harm.  

 The absorbed/equivalent dose calculations in (e) are higher than those in (d) but only by a 
factor of ~4, rather than 1000 (the number of beads). This shows how localised the dose given 
by an individual bead is. It is therefore very important that the beads are indeed delivered to 
the vicinity of the tumour, so that the vast majority of the dose is absorbed by the cancerous 
tissue and the healthy liver tissue receives a much lower dose. 

 90Y is well suited to this application because: 

 (i) It is a pure β emitter – no γ radiation, which will penetrate much further through the body 
is emitted; 

 (ii) The maximum range of its β radiation means that the dose is delivered in a reasonably 
small volume around the bead, making it suitable for targeting cancerous tumours; 

 (iii) The half-life of 90Y is not so short as to be impractical but not so long that dose delivery 
takes an excessively long time.  [20%] 
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 Assessor’s Comments: 

All candidates: 23 attempts, Average mark 10.9/20, Maximum 17, Minimum 6. 
Comfortably the least popular and worst done question, probably because the context 
(radioembolization) was unfamiliar. 
Except for mistakes due to lack of attention to detail, parts (a) to (c) were done well.  
Part (d) was a struggle for many. Lots of candidates tried incorrectly to use the dose formula 
for an external gamma source. Others calculated the initial dose rate rather than the 
accumulated dose (integrated over time) as required. 
Many candidates were unsure how to use the mass of the liver in the calculations for part (e). 
Answers to part (f) revealed that many candidates did not understand that a high, localized 
dose is not only acceptable but essential in radiotherapy. 

Q2 
(a) From the 4M16 data sheet, the general neutron diffusion equation is 

  
    

€ 

dn
dt

= −∇. j + (η −1)Σaφ + S  

 In steady state 
    

€ 

dn
dt

= 0; for a source-free system     

€ 

S = 0; for a non-multiplying medium   

€ 

η = 0. 

      

€ 

∴ 0 = −∇. j −Σaφ  

 Substituting for   

€ 

j  using   

€ 

j = −D∇φ  (Fick’s Law) 

      

€ 

∴ 0 =∇.(D∇φ) −Σaφ  

 As the medium is homogeneous, D is constant 

      

€ 

∴ 0 = D∇2φ −Σaφ  

 Defining 
    

€ 

L2 =
D
Σa

 where L is the diffusion length 

  
    

€ 

∴ 0 = ∇2φ −
φ

L2  

 For spherical symmetry, from the 4M16 data sheet: 
    

€ 

∇2 =
1
r 2

d
dr

r 2 d
dr

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟  

  
    

€ 

∴ 0 =
1
r 2

d
dr

r 2 dφ
dr

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ −

φ

L2  

 Now 
    

€ 

1
r 2

d
dr

r 2 dφ
dr

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ =

1
r 2 2r

dφ
dr

+ r 2 d 2φ

dr 2

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ =

1
r

2
dφ
dr

+ r
d 2φ

dr 2

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟  

 and 
    

€ 

1
r

d 2(φr )
dr 2

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ =

1
r

d
dr

φ + r
dφ
dr

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ =

1
r

2
dφ
dr

+ r
d 2φ

dr 2

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟  

      

€ 

∴ 0 =
1
r

d 2(φr )
dr 2

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ −

φ

L2  [25%] 
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(b) The result from (a) can be written as 

  
    

€ 

d 2(φr )
dr 2 −

φr
L2 = 0  

 By inspection, this differential equation has a general solution of the form 

  
    

€ 

φr = Aexp
r
L
⎛ 

⎝ 
⎜ 
⎞ 

⎠ 
⎟ + Cexp −

r
L

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟  

  
    

€ 

∴ φ =
A
r

exp
r
L
⎛ 

⎝ 
⎜ 
⎞ 

⎠ 
⎟ +

C
r

exp −
r
L

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟  

 From physical considerations, as   

€ 

r →∞ ,   

€ 

φ →0 . As 
    

€ 

exp
r
L
⎛ 

⎝ 
⎜ 
⎞ 

⎠ 
⎟  increases faster than r, this 

means that     

€ 

A = 0 . 

  
    

€ 

∴ φ =
C
r

exp −
r
L

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟  

 At     

€ 

r = R1,   

€ 

φ = φ1 
    

€ 

∴ φ1 =
C
R1

exp −
R1
L

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟  

  
    

€ 

∴ C = φ1R1 exp
R1
L

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟  

  
    

€ 

∴ φ =
C
r

exp −
r
L

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ =

φ1R1
r

exp
R1
L

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ exp −

r
L

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ =

φ1R1
r

exp
R1 − r

L
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟  [30%] 

(c) For a multiplying medium   

€ 

η > 0, so the diffusion equation is now 

      

€ 

0 = D∇2φ + (η −1)Σaφ  [5%] 

(d) If     

€ 

k∞ >1, then   

€ 

η >1     

€ 

∴ 0 = ∇2φ + Bm
2 φ  

 where 
    

€ 

Bm
2 =

(η −1)Σa
D

> 0 is the material buckling. 

 So, with spherical symmetry, 
    

€ 

∴ 0 =
1
r

d 2(φr )
dr 2

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ + Bm

2 φ  

  
    

€ 

∴
d 2(φr )

dr 2 + Bm
2 φr = 0  

 This an SHM equation and therefore has the general solution 

      

€ 

φr = Asin(Bmr) + Ccos(Bmr)  

  
    

€ 

∴ φ =
A
r

sin(Bmr) +
C
r

cos(Bmr)  

 When     

€ 

r = 0 , the flux 

€ 

φ  must be finite 
      

€ 

∴ C = 0  
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€ 

∴ φ =
A
r

sin(Bmr)  

 The flux 

€ 

φ  will not be zero at the physical edge of the reactor,     

€ 

r = R2 , say, because of 
neutron leakage. The standard boundary condition is to assume that the flux falls to zero at a 
small distance outside the reactor, the so-called extrapolation distance, at     

€ 

r = R2 +δ , say. 
Using this boundary condition 

  
    

€ 

∴ 0 =
A

R2 +δ
sin(Bm[R2 +δ])  

      

€ 

∴ Bm[R2 +δ] = π  

  
    

€ 

∴ R2 =
π

Bm
−δ  [40%] 

 Assessor’s Comments: 

All candidates: 75 attempts, Average mark 12.9/20, Maximum 20, Minimum 2. 
A popular question attempted by 89% of candidates, many of whom made good attempts. 
A general issue in many answers was insufficiently careful justification of steps. 
Several answers to part (a) revealed that the candidate did not understand the meaning of the 
term ‘non-multiplying’. The fact that the reactor being homogeneous implied a spatially 
invariant diffusion coefficient was also missed by many. 
A number of candidates tried to apply a boundary condition at     

€ 

r = 0  in part (b) despite this 
being outside the region of interest; others simply ignored the possible     

€ 

exp(r / L)  solution 
entirely. 
Many candidates had difficulties interpreting the significance of   

€ 

k∞ being greater than unity 
in part (d). Symmetry arguments were incorrectly invoked at     

€ 

r = 0  to eliminate the sin term. 
Despite the requirement to carefully explain the boundary condition at the edge of the reactor, 
several candidates failed to discuss the extrapolation distance.  
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Q3 

(a) AGR cladding is stainless steel. The coolant is carbon dioxide (CO2). [5%] 

(b)

   
 Key features: 

 
    

€ 

dT
dx

≠ 0 at the ends as the power is not zero there (chopped cosine). 

     

€ 

Tcoolant  is symmetric about the channel centre. 

     

€ 

Tfuel > Tcladding > Tcoolant  throughout. 

 The temperature differences     

€ 

Tfuel −Tcladding  and     

€ 

Tcladding −Tcoolant  are chopped cosines. [20%] 

(c) Ginn’s equation: 
    

€ 

θ = sin
πx
2L'

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ + Qcos

πx
2L'

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟  

 

€ 

θ  is a maximum when 
    

€ 

dθ
dx

= 0  

  
    

€ 

∴
π

2L'
cos

πx
2L'

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ −

πQ
2L'

sin
πx
2L'

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ = 0 

  
    

€ 

∴ Qsin
πx
2L'

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ = cos

πx
2L'

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟  

  
    

€ 

∴ tan
πx
2L'

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ =

1
Q

⇒ x =
2L'

π
tan−1 1

Q
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟  [10%] 

(d)  
    

€ 

Q =
πm. cp

UA
L
L'

 

     

€ 

A = 4πroL  
    

€ 

∴ Q =
πm. cp

U 4πroL
L
L'

=
m. cp

U 4ro L'
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 From the information given in the question     

€ 

ro = 0.4 m and     

€ 

L' = 4.5 m. 

     

€ 

m. cp can be found from the channel power: 

      

€ 

m. cp (Tout −Tin ) = Pchannel  (3.1) 

  
    

€ 

∴ m. cp =
Pchannel

Tout −Tin
=

10 ×106

635 − 335
= 33.33 ×103 WK−1  

 As there is no scale on the cladding,   

€ 

U = h . 

  
    

€ 

∴ Q =
m. cp

U 4ro L'
=

33.33 ×103

5 ×103 × 4 × 0.4 × 4.5
= 0.9259  

  
    

€ 

∴ x =
2L'

π
tan−1 1

Q
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ =

2 × 4.5
π

tan−1 1
0.9259
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ = 2.360 m  

 i.e. 2.36 m past the channel centre. 

  
    

€ 

θ = sin
πx
2L'

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ + Qcos

πx
2L'

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟  

  
  

€ 

∴ θmax = sin
π×2.36
2 × 4.5

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ + 0.9259cos

π×2.36
2 × 4.5

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ =1.3628 

 It is also acceptable to find   

€ 

θmax  using the relationship     

€ 

θmax
2 =1+ Q2 (if remembered). 

  
    

€ 

θ =
T −T1 2

Tout −T1 2
sin

πL
2L'

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟  

  

    

€ 

∴ T = T1 2 +
θ

sin πL
2L'

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

Tout −T1 2( )  

 Here     

€ 

T1 2 = 485 °C (the average of     

€ 

Tin  and     

€ 

Tout ). 

  

    

€ 

∴ Tmax = 485+
1.3628

sin π×4
2 × 4.5
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

635 − 485( ) = 692.6  °C [45%] 

(e) 

(i) From equation (3.1) for the same     

€ 

Tout  (given the same     

€ 

Tin ) we need     

€ 

Pchannel/    

€ 

m. cp to be 
constant. As   

€ 

cp  is unchanged, if     

€ 

Pchannel is halved, we need to halve     

€ 

m.  (50% reduction). [5%] 

(ii) If     

€ 

Tin  and     

€ 

Tout  are the same,     

€ 

Tmax  depends only on   

€ 

θmax  (and therefore on Q). As h is 
assumed to be unchanged, U is unchanged. Therefore Q depends only on     

€ 

m. cp. As     

€ 

m. cp is 
halved, Q is halved 

€ 

⇒   

€ 

θmax  is lower 

€ 

⇒     

€ 

Tmax  is lower. 

 Alternatively: As a result of the gagging the axial coolant temperature distribution is the same 
in both channels. The local temperature difference between the coolant and the cladding 
surface depends on the power generated in the fuel at the axial location in question. Thus, 
these temperature differences are lower in the 5 MW channel, and hence the maximum 
cladding surface temperature will be lower.   [15%] 
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 Assessor’s Comments: 

All candidates: 76 attempts, Average mark 13.7/20, Maximum 19, Minimum 5. 
A popular question attempted by 90% of candidates, many of whom made good attempts. 
Disappointingly few candidates knew the materials used as cladding and coolant in AGRs. 
Most sketches provided in answer to part (b) were insufficiently detailed/accurate to gain full 
credit. 
Several candidates provided proofs of     

€ 

θmax
2 =1+ Q2 as part of their answers to part (d), 

thereby wasting valuable time – the result was not even needed. Many attempts were 
undermined by errors of detail (confusing radius and diameter or length and half-length). 
Several completely implausible results were allowed to pass without comment. Several 

candidates overlooked the 
    

€ 

sin
πL
2L'

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟  term in the equation for 

€ 

θ ; others failed to appreciate that 

x is measured from the axial middle of the channel and/or used the fuel element cross-
sectional area rather than its surface area in calculating Q. 

Q4 

(a)   

€ 

γx Σ f φ  is the rate of production of Xe-135 directly as a fission product 

   

€ 

λi I  is the rate of production of Xe-135 by the decay of I-135 

   

€ 

λx X  is the rate of loss of Xe-135 by radioactive decay 

   

€ 

σXφ  is the rate of loss of Xe-135 by transmutation to Xe-136 through neutron capture [10%] 

(b) In steady state, the equilibrium I-135 population is given by 

  
    

€ 

dI
dt

= γiΣ f φ − λi I0 = 0 ⇒ I0 =
γiΣ f φ

λi
 

 and the equilibrium Xe-135 population by 

  
    

€ 

dX
dt

= γx Σ f φ + λi I0 − λx X0 −σX0φ = 0 ⇒ X0 =
γx Σ f φ + λi I0

λx +σφ
=

(γx + γi )Σ f φ

λx +σφ
 

 The poisoning effect of the Xe-135 is given by 

  
    

€ 

ρXe =
neutron loss rate due to xenon
total neutron production rate

= −
σXφ
νΣ f φ

= −
σX
νΣ f

 

 So, the steady-state poisoning effect is 

  
    

€ 

ρXe0 = −
σ

νΣ f
X0 = −

σ
νΣf

(γ x + γi )Σf φ

(λ x +σφ )
= −

σ (γ x + γi )φ
ν (λ x +σφ )

 [20%] 

(c) If 

€ 

ρCR  is the maximum excess reactivity available from the control rods, the maximum 
sustainable flux is reached when 

  
    

€ 

ρCR =
σ (γx + γ i )φmax
ν(λx +σφmax )

⇒ φmax =
νρCRλx

σ (γx + γ i −νρCR )
 

  

€ 

∴ φmax =
2.43 × 0.02 × 2.093 ×10−5

2.75 ×10−22(0.003+ 0.061− 2.43 × 0.02)
= 2.402 ×1017 m−2s−1 [10%] 
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(d) Post-shutdown the flux 

€ 

φ  will be zero. With zero flux the I-135 and Xe-135 populations vary 
according to: 

  
  

€ 

dI
dt

= −λi I  

 and 
  

€ 

dX
dt

+ λx X = λi I  

 Given that 

€ 

I = I0 at 

€ 

t = 0 , the I-135 population will clearly just decline exponentially: 

      

€ 

I = I0exp(−λi t)  

  
    

€ 

∴
dX
dt

+ λx X = λi I0exp(−λi t)  (4.1) 

 The solution of equation (4.1) will be made up of a particular integral (PI) and a 
complementary function (CF). Looking at the right-hand side, the PI will be of the form: 

      

€ 

X PI = Aexp(−λi t)  

 Substituting into the left-hand side: 

      

€ 

−λi Aexp(−λi t) + λx Aexp(−λi t) = λi I0exp(−λi t)  

  
    

€ 

∴ A =
λi I0
λx − λi

 

 The CF is the solution of the homogeneous form of equation (4.1): 

  
    

€ 

dX
dt

+ λx X = 0  

 which is, by inspection, of the form: 

      

€ 

XCF = Bexp(−λxt)  

 Thus, the general solution for X is: 

  
    

€ 

X = X PI + XCF =
λi I0
λx − λi

exp(−λi t) + Bexp(−λxt)  

 To find B, use the boundary condition     

€ 

X = X0  at     

€ 

t = 0 : 

  
    

€ 

∴ X 0 =
λi I0
λx − λi

+ B ⇒ B = X 0 −
λi I0
λx − λi

 

  
    

€ 

∴ X = X0 exp(−λxt) +
λi I0
λx − λi

exp(−λi t) − exp(−λxt)[ ]  

 Using results found in part (b): 

  
    

€ 

I0 =
γiΣ f φmax

λi
 

 and 
    

€ 

X0 =
(γx + γi )Σ f φmax

λx +σφmax
 

  
    

€ 

∴ X =
(γx + γi )Σf φmax

λx +σφmax
exp(−λxt) +

γiΣf φmax

λx − λ i
exp(−λ i t) − exp(−λxt)[ ]  [45%] 
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(e) The Xe-135 population will rise immediately after the shutdown, go through a maximum and 
then fall (eventually to zero). As prior to the shutdown the reactor was operating at the highest 
possible flux level (determined by the amount of xenon poisoning that can be overcome), it 
will not be possible to restart the reactor until the Xe-135 population falls again to 

€ 

X0 , its 
level when shutdown occurred. 

 Hence, using the results in part (d), this will occur at time t when 

  
    

€ 

(γx + γi )Σf φmax

λx +σφmax
=

(γx + γi )Σf φmax

λx +σφmax
exp(−λxt) +

γiΣf φmax

λx − λ i
exp(−λ i t) − exp(−λxt)[ ]  

  
    

€ 

∴
γx + γi

λx +σφmax
1− exp(−λxt)[ ] =

γi
λx − λ i

exp(−λ i t) − exp(−λxt)[ ]  

 This time is in practice of the order of several hours, so spurious trips can result in significant 
unnecessary loss of generation (and therefore revenue). [15%] 

 Assessor’s Comments: 
All candidates: 78 attempts, Average mark 14.8/20, Maximum 20, Minimum 4. 
A popular question attempted by 93% of candidates, many of whom made good attempts. 
Most answers to parts (a) and (b) were very good.  
Several candidates had difficulties with signs in part (c). Many candidates did not know the 
correct units for neutron flux. Some candidates calculated the maximum flux to be negative 
without comment. 
A surprising number of candidates did not recognize that the neutron flux would be zero when 
the reactor was shut down and therefore tried to solve the wrong differential equations in their 
attempt at part (d). 
In part (e), the majority of candidates erroneously thought that the reactor could be started 
when the Xe-135 population stops increasing. That is not the case in the scenario here. 


