
 1

4M21 Software Engineering and Design: 2018/2019

 Solutions

Elena Punskaya

15 January 2019

Q1. (a) A class represents a key concept within the system. It encapsulates data and behaviour.Classes provide
abstraction. A class can be used to create multiple instances, i.e. objects that can contain data and behave
according to class definition. Given the same data (state) two independent instances of the same class will
behave exactly the same. In production a large number of objects are created, interact with each other, or are
destroyed if no longer needed.
 (b) One of possible solutions is presented below.

 (i) Class diagram

(ii) Sequence diagram

Request Employee
1

created by

DispatchSystem

submit(Request)

1..*

logs
Incident

1..*
staff

Location

Longitude
Latitude

Name
Payroll ID

1

for

Drone

dispatchTo(Location)

1..* manages1
attended by

1
originated from

ID

create(aLocation: Location,
aStaffMember: Staff)

create(aRequest: Request,
aDrone: Drone)

/aDispatchSystem:
DispatchSystem

/aDrone:
Drone

/anIncident:
Incident

submit(aRequest)

create(aRequest, a Drone)

dispatchTo(aLocation)

log(anIncident)

create(aLocation, aStaffMember)

/aRequest:Request

getLocation()

/aLocation:
Location

getAvailableDrone()

getLongitude()

getLatitude)

 2

 (iii) An example of extension, among others, could be to call ambulance after retrieving a specific
address where the incident occurred

Assessor’s comments: The question was designed to test the understanding of the key concepts of the object-
oriented design and the ability to apply it in practice. It was a popular question and most students were able to go
through an independent design process successfully and communicate the outcome clearly using the standard
notation. Not everyone was careful when working with both class and sequence diagrams as often sequence
diagram did not correspond to the class diagram.

Employee
1

created by

DispatchSystem

submit(Request)

1..*

logs
Incident

1..*
staff

Location

Longitude
Latitude
Address

Name
Payroll ID

1

for

Drone

dispatchTo(Location)

1..* manages1
attended by

1
originated from

ID

EmergencyService

callAmbulance(address)

1 alerts

create(aRequest: Request,
aDrone: Drone)

Request

create(aLocation: Location,
aStaffMember: Staff)

/aDispatchSystem:
DispatchSystem

/aDrone:
Drone

/anIncident:
Incident

submit(aRequest)

create(aRequest, a Drone)

dispatchTo(aLocation)

log(anIncident)

create(aLocation, aStaffMember)

/aRequest:Request

getLocation()

/aLocation:
Location

/anEmergencyService:
EmergencyService

getAddress()

callAmbulance(address)

getAvailableDrone()

getLongitude()

getLatitude)

 3

Q2. (a) We often find the same architectural structures occurring repeatedly (with subtle variations) created in
response to commonly recurring problems. These solutions are identified and recorded as design patterns.
Design patterns are described using standard format, including motivation, solution options, optimal solution,
code example, design pattern, disadvantages.

One of the examples is an Observer pattern, which allows multiple object to maintain a consistent view on the
state of the object of interest. For example, Twitter followers can be observers.

Disadvantages: can lead to a large amount of computation overhead if not safe-guarded, in particular, of a rare of
notifications is high and the reaction to those updates is a heavy-load operation.

(b) One of possible solutions is presented below

 (c) (i) Updated Class Diagram

8 Engineering Part IIA: 3F6 - Software Engineering and Design

The Observer Design Pattern

This is also sometimes known as the Model-View-Controller (MVC)
pattern. The key idea is that it separates the model (or docu-
ment (or colour)) from the user interface display of that state.
The model only needs to know that it has a set of observers, not
the details of each observer.

Subject
+Attach(o:Observer)
+Detach(o:Observer)
+Notify()

Observer
+Update()

ConcreteSubject
+subjectstate:
+GetState()
+SetState()

ConcreteObserver
+Update()

observers
*

 subject
 1

for each o in observers {
 o->Update();
}

s = subject->GetState();
display(s);

Disadvantages

This pattern can lead to a large amount of computational over-
head. For example consider gradually moving a slider bar in the
colour selector example. This will generate several set colour

calls to the ColourHandler which in turn will generate n times
that many update calls to the n colour selectors.

CustomerAccount

debit(amount)
credit(amount)
canDebit(amount)

1..*

holds

PaymentSystem

process(Payment)

1..*

processes
Payment

Amount

1
originator

1
payee

create(originator: Account,
payee: Account,
amount)

 4

 (ii). Updated Sequence Diagram

Assessor’s comments: This question was on understanding sequence diagrams, extending the design for
software growth and the use of design patterns in the design process. This was the most popular question which
was completed reasonably well, however, many students found it challenging to derive the class diagrams from
the sequence diagram and, in particular, struggled with associations. Most students were successful with
application of the observer pattern in the last part of the question although rarely were able to apply it to full
extend.

<ITxObserver>

TransactionOccured(amount,
Account)

FraudMonitor

IObservable

add(ITxObserver)
remove(ITxObserver)

*
observed by

CustomerAccount

debit(amount)
credit(amount)
canDebit(amount)

1..*
holds

PaymentSystem

process(Payment)

1..*
processes

Payment

Amount

1
originator

1
payee

create(originator: Account,
payee: Account,
amount)

/aPaymentSystem:
PaymentSystem

/anOriginator:
Customer

/anOriginAccount:
Account

process(aPayment)

canDebit(amount)

getAccount()

debit (amount)

create(anOriginator, aPayee, amount)

/aPayment:Payment

getOriginator()

getPayee()

/aFraudMonitor:
FraudMonitor

sendSMS(amount,
OriginAccount)

notify() checkRisk()

TransactionOccured(amount, OriginAccount)
TransactionOccured(amount,
 OriginAccount)

antOriginator

anOriginAccount

true

aPayee

 5

Q3 (a) Metaphor is a set of UI visuals, actions, tasks, framework that the user is already familiar with to establish
user’s conceptual model. Using metaphors helps the user to align their conceptual model with the way that the
program actually works. Ebook reader approach and media player UI could be used as examples.

(b) (i) One of possible solutions is presented below

 (ii) The usability test should describe

Method

 - test setup – how use cases are presented to the users

 - approach – qualitative interviews by user experienced specialists

 - session time: e.g. 30 mins

 Target users sample

 - age, gender, level of experience with technology

 Scenarios – specific actions users are asked to perform

 Feedback

 - qualitative interviews (how the users felt about the device)

 - subjective ranking in pre-defined categories (easy to understand, innovative, etc.)

 - observations made by user experience specialist during the scenarios (for example, tried to
put a finger on the screen rarther than side of the device)

 (iii) Some of the examples could be:

elderly people potentially might find it difficult to read text in small font; given the small size of the screen
it might be a good idea to display clear pictures rather than provide text descriptions

© 2012-2018 Elena Punskaya
Cambridge University Engineering Department

!49

Hold your finger on
the side of the case

ECG
Keep still

 ECG in progress

5 seconds left

Success

 Again Ok

Start

ECG
signal
detected

Hold your finger on
the side of the case
Keep still

 No ECG detected

!

 Ok

20 sec
ECG
captured

Exit

Exit

ECG
signal
detected

no signal
detected

no signal detected
for 20 secs

 6

 elderly people might find it difficult to press small buttons; a clear simplified UI, large buttons etc.

 elderly people might not be familiar with/ might find difficult some of the gestures such as swiping (if
used)

 elderly people might be hesitant to try / might be overwhelmed with too much information - contextual
help/pictures as tips at each stage

Assessor’s comments: This was a User Interface design question that was answered well by most of the
candidates. A popular question that candidates were able to complete without any major challenges, however,
some candidates did not read the questions carefully and some omitted some functionality/features. Some also
lacked the methodological approach to the usability study design and provided only generic descriptions.

Q4. (a) Agile methodologies: Extreme Programming, Test Driven Development, Feature Driven Development,
Agile Modelling, Agile Unified Process, Dynamic System Development, Scrum among others.

Agile techniques allow to incorporate a more iterative process to software development and therefore allow to
adapt and grow software, and incorporate changes. They do not necessarily allow to clarify system goals early in
the process, and it might be difficult to charge customers for changes. If all requirements are not defined well in
advance testing and delivery according to specification might be not suitable for critical products. Some of the
more traditional project management tools might not work well with it although agile management tools are
available.

 (b)

 (i) Due to the nature of the application the core functions of the system are critical and have to work
reliably from the first moment it goes live

- the system is used during laboratory experiments and the cost of the core functionality not working is
high - if the system fails the experiment has to be repeated and often limited resources (including time) are
wasted

- the system is used to support evidence and make conclusions regarding genetic cause of human
disease and to identify and test new drugs to treat them - the system needs to be thought of reliable to make sure
that these conclusions are not challenged

- there is stringent regulatory framework for medical software/devices, therefore the system might need
to go through both quality assurance and performance certification, requiring thorough formal documentation

It might be beneficial to use a formal waterfall model to develop the core functionality of the system.

At the next stage it might be beneficial to develop a number of supporting features such as visualisation
or reporting tools deemed not critical - these additional functionality could potentially be developed using an
iterative process and a more agile approach.(

(ii) For the development of the core functionality, waterfall model follow a sequential process flowing
steadily down the phases:

Requirements and Analyses: the environment and processes in which software will be used need to be
analysed to establish operational parameters and required interfaces. Product requirements documentation is
produced in compliance with relevant regulations.

 7

Design: software architecture is defined to meet functional specifications. The design is documented in
relation to requirements being addressed.

Implementation: code is produced and tested to perform functions according to specifications.

Testing: the test specification is developed and the product is tested in simulated environments or in a
real lab environment alongside existing experiment tools for all required parameters, including capturing and
interpreting data, failover and error handling scenarios etc. Test results are captured and where necessary
reviewed by qualified medical professionals.

Operations: requirements and guidelines are established for installation, migration and maintenance of
the product

This project will typically require a Quality Management System in place and will be utilising Gantt chart
for project management and Source Code Repository for code development.

(iii)

- Not well analysed / misunderstood system requirements - expert advice from the specialists and
potential users of the system is required when “one is deciding what to build”, detailed use cases and scenarios
should be created in the requirement analysis phase and reviewed during workshops with lab staff

- Some of the requirements might not be described exactly and might be misinterpreted when translated
into software - testing strategy might need to be designed in consultation with the specialists

- Some of the requirements might not be identified at the initial stage - introduce a more iterative
approach at the later stages, a change request system should be available to allow changes in the existing
specifications

- Performance might not meet specification - test strategy including integration, validation and
verification, resource exhaustion, error recovery, performance and stress testing as well as non functional tests,
use of real fish should be encouraged during the implementation and testing, this could be further supplemented
by using data captured by existing systems

- The users might find it difficult to use the system / might not use the system as intended - usability
tests

- Not completed on time /on budget - formal project management tools employed

Assessor’s comments: A reasonably straightforward, however less popular, question on software engineering
methodologies and their application. Those who did attempt the question answered most parts well. Some
candidates did not provide direct answers to the questions and only provided generic statements.

