a) velocity diagram.

$$
0, a, b
$$

$$
\begin{aligned}
& \omega_{C D E}=\frac{c e}{c E}=\frac{4 \omega a}{2 a}=2 \omega \\
& \omega_{A C}=\frac{a c}{A C}=\frac{2 \omega a}{2 a}=\omega^{\prime} \\
& \omega_{B E}=\frac{b e^{\prime}}{B E}=\frac{\sqrt{3} \omega a}{\sqrt{3} a}=\omega^{\prime}
\end{aligned}
$$

b) acceleration diagram.

Ye (by image the mem $e d=c d$)

$$
\left(\omega_{C D}\right)^{2} C D=4 \omega^{2} a
$$

From diagram, sliding (radial) acceleration i $\ddot{r}_{E B}=2 \sqrt{3} \omega^{2} a \$$

2 a)

moments about A

$$
\begin{aligned}
m g a & =-\left(m k^{2}+m a^{2}\right) \ddot{\theta} \\
\dot{g} & =-\frac{m g a}{m k^{2}+m a^{2}}=\frac{-g a}{k^{2}+a^{2}}
\end{aligned}
$$

interate $\dot{\theta}=\frac{-g a t}{k^{2}+a^{2}}+C$
$\dot{\theta}=0$ when $t=0 \quad \therefore \quad C=0$
integrate $\theta=\frac{-g a t^{2}}{2\left(k^{2}+a^{2}\right)}+D$

$$
\begin{array}{r}
\theta=\frac{h_{1}}{a} \text { at } t=0 \therefore D=\frac{h_{1}}{a} \\
\theta=\frac{-g a t^{2}}{2\left(k^{2}+a^{2}\right)}+\frac{h_{1}}{a}
\end{array}
$$

time to $\theta=0 \quad T_{1}=\sqrt{\frac{2 h_{1}\left(k^{2}+a^{2}\right)}{g a^{2}}}$

Impart at B, so conservation of moment of momentum about B)

$$
\begin{aligned}
& m k^{2} w_{i}-m w_{i} a^{2}=m k^{2} w_{i+1}+m w_{i+1} a^{2} \\
& \frac{w_{i+1}}{w_{i}}=\frac{k^{2}-a^{2}}{k^{2}+a^{2}}
\end{aligned}
$$

couseraten of evergy: E cost $=K E$ gamid

$$
m g h_{i}=\frac{1}{2} \omega_{i}^{2}\left(m k^{2}+m a^{2}\right)
$$

Where h_{i} is max, haight bepre cmpact i w_{i} is ang, velority commedially befre ampact i

$$
\therefore \quad h_{i} \alpha \omega_{i}^{2}, \frac{h_{i+1}}{h_{i}}=\frac{\omega_{i+1}^{2}}{\omega_{i}^{2}}=\left(\frac{k^{2}-a^{2}}{k^{2}+a^{2}}\right)^{2}
$$

c) $k=2 a \therefore T_{1}=\frac{\sqrt{2 h_{1}\left(4 a^{2}+a^{2}\right)}}{\frac{g a^{2}}{h_{1}} \sqrt{\frac{10}{g}}}$ and $\frac{h_{i+1}}{h_{i}}=\left(\frac{4 a^{2}-a^{2}}{4 a^{2}+a^{2}}\right)^{2}=\left(\frac{3}{5}\right)^{2} \therefore \sqrt{\frac{h_{i+1}}{h_{i}}}=\frac{3}{5}$

$$
\begin{aligned}
& t_{\infty}=2 T_{1}+2 T_{2}+2 T_{3}+\ldots T_{1} \\
& =2\left(T_{1}+\frac{T_{2}}{T_{2}}+\frac{T_{3}}{3}+\cdots\right)-T_{1} \\
& =2\left(\sqrt{h_{1}} \sqrt{\frac{10}{g}}+\sqrt{h_{2}} \sqrt{\frac{10}{g}}+\sqrt{h_{3}} \sqrt{\frac{10}{g}}+\cdots\right)-\sqrt{h_{1} \sqrt{\frac{10}{g}}} \\
& =2 \sqrt{h_{1}} \sqrt{\frac{10}{9}}\left(1+\sqrt{\frac{h_{2}}{h_{1}}}+\sqrt{\frac{h_{2}}{h_{1}}} \sqrt{\frac{h_{3}}{h_{2}}}+\cdots \cdot \frac{-1}{2}\right) \\
& =2 \sqrt{h_{1}} \sqrt{\frac{10}{9}}(\underbrace{1+\frac{3}{5}+\left(\frac{3}{5}\right)^{2}}_{G P}+\ldots, \frac{-1}{2})
\end{aligned}
$$

$$
\therefore t_{\infty}=4 \sqrt{\frac{10 h_{1}}{9}}
$$

3 a) velocity doagram.

velocity of postar $D \quad V_{p}=w a \phi$ auqular velocity of nd $B D \quad \underline{\omega}_{B D}=0$. velocity of rod at $C \quad \underline{V}_{C}=u_{a} P$.
b) acceleateor doopram.

From (a) the anqular velocity of the rod s zoro, so no centripetal acceleratia componerot behveen B and D.
acceleraton of postan $D \quad a_{D}=\frac{\omega^{3}}{\sqrt{3}} \varphi$

$$
\text { anquiar acm of rod } B D \begin{aligned}
\dot{U}_{B D} & =\frac{b d}{B D}
\end{aligned}=\frac{w^{2} a \frac{2}{\sqrt{3}}}{2 a}
$$

$$
\text { asen of rod at } c \quad a_{c}=\left\{\begin{array}{l}
\frac{w^{2} a}{2 \sqrt{3}} \\
\frac{w^{2} a}{2} 4
\end{array}\right.
$$

c) power.

$$
\begin{aligned}
\underline{Q} \underline{w}= & m_{p} \underline{a}_{D} \cdot \underline{v}_{D}+m_{R} \underline{a}_{C} \cdot \underline{V}_{C}+I \underline{\underline{w}_{B D}} \cdot \underline{w}_{B D}+\underline{E} \cdot \underline{v}_{D} \\
= & m_{p} \cdot \frac{w^{2} a}{\sqrt{3}} \cdot w a+m_{R} \frac{w^{2} a}{2 \sqrt{3}} w a+M_{R} \frac{w^{2} a}{2} \cdot 0 \\
& +I \frac{w^{2}}{\sqrt{3}} \cdot 0+F \cdot w a \\
\therefore Q= & m_{p} \frac{w^{2} a^{2}}{\sqrt{3}}+m_{R} \frac{w^{2} a^{2}}{2 \sqrt{3}}+F a
\end{aligned}
$$

appleed to the crauk
m same direchai as rotahar w

4 a) staci balance - the renillant of all the beaning fores os zero
depranui balance - the total moment of the beaning rewken fores about any pout on the shaft ss zero.

For three imbalanced rotor, shan balance can be achieved the the sum of the two smaller out of bdances is greats than or equal to the largest out of balance.

$$
\begin{aligned}
& \theta_{B}=90^{\circ} \\
& \theta_{c}=180^{\circ}+\sin ^{-1} \frac{9}{5}=216.9^{\circ}
\end{aligned}
$$

ii) Tale wits about beaning X :

$$
M_{C} \cdot \frac{12}{15}
$$

$$
=\frac{6 \omega^{2}}{1000}
$$

out of balance moment

$$
\begin{aligned}
R_{y \cdot} 0.4 & =\sqrt{\left(M_{c} \frac{12}{15}+M_{A}\right)^{2}+\left(M_{c} \frac{g^{1}}{15}-M_{B}\right)^{2}} \\
& =\sqrt{\left(\frac{6 \omega^{2}}{1000}+\frac{1.2 \omega^{2}}{1000}\right)^{2}+\left(\frac{4.5 \omega^{2}}{1000}-\frac{0.9 \omega^{2}}{1000}\right)^{2}} \\
& =\frac{\omega^{2}}{1000} \cdot \sqrt{7.2^{2}+3.6^{2}}=\frac{\omega^{2}}{1000} \frac{18}{\sqrt{5}} \\
R_{y} 0.4 & =\left(5000 \cdot \frac{2 \pi}{60}\right)^{2} \frac{18}{1000} \frac{18}{\sqrt{5}}=2207 \mathrm{Nm} \\
R_{y} & =5517 \mathrm{~N} \quad \text { (Rx has same magnitude } \\
\theta & =\tan ^{-1} \frac{306}{7.2}=26.6^{\circ} \quad \text { apposite divechon) }
\end{aligned}
$$

iii) remove mans m at raduis r at A and C to generate moment

$$
m r \omega^{2} 0.6=2207 \mathrm{Nm}
$$

$r=0.1 \mathrm{~m}$.
$\Phi \quad \rightarrow$ distance between A and C
man

$$
\begin{aligned}
& m=\frac{2207}{0.6 .0 .1\left(\frac{5000.2 \pi}{60}\right)^{2}} \\
& m=0.134 \mathrm{~kg}
\end{aligned}
$$

removed at

Altenahre soluhai to Q4
4 a) Static balonce: (If 4 on Mift asion, mi net bearing forces
Dynamir batonce: beoving forces Goik zero
Con achieve itatic Colare if no one inbalonce is greator than the sum of the other two.
G) 1

Rotate B by 90°, and C by 216.9°.
($3-4-5$ tiiangle)
11) M ove $\frac{2}{3}$ of $B \rightarrow A$, $1 / 3$ of $B \rightarrow C$:

$$
\text { Fone }=\frac{13.416 \times 0.60^{2}}{0.4 \times 1000} \times 10^{-3}=5.517 \mathrm{kN}
$$

1i1)
R emove 13.416 kymme 0.1 m i.e. $0.134 \mathrm{Kg} @ 26.6^{\circ}$ on A and rome ancount in appointe direction on C.

5 a) no slipping between gears so: $\omega_{1} N_{A}=\omega_{2} N_{B}$ and $\omega_{2} N_{C}=\omega_{3} N_{B}$ where N_{i} are the number of teeth.

$$
\begin{aligned}
& \therefore \quad \frac{w_{1}}{w_{2}}=\frac{N_{B}}{N_{A}} \text { and } \frac{w_{2}}{w_{3}}=\frac{N_{B}}{N_{C}} \\
& \therefore \quad \frac{w_{1}}{w_{3}}=\frac{w_{1}}{w_{2}} \cdot \frac{w_{2}}{w_{3}}=\frac{N_{B}}{N_{A}} \cdot \frac{N_{D}}{N_{C}}=\frac{36}{12} \cdot \frac{30}{18}=5
\end{aligned}
$$

b) gear contact fores generate moments on the shafts of the rotors.
c) $I_{A B}$
equiliforwem of shaft BC about its axis no shaft curia \because

$$
\begin{aligned}
& I_{A B} \cdot \Gamma_{B}=I_{C D} \cdot r_{C} \\
& I_{C D}=\frac{r_{B}}{I_{C}}=\frac{N_{B}}{I_{C}}=\frac{36}{18}=2
\end{aligned}
$$

Note $N_{A}+N_{B}=N_{C}+N_{D}$
therefore roduys of gear wheels is propathond to number of teeth.
d) angular momentum before and aft:

	BEFORE	AFTER
$\mathrm{J}:$	ωJ	$\omega^{\prime} J$
$2 \mathrm{~J}:$	$\omega 2 J$	$\frac{\omega^{\prime}}{5} 2 \mathrm{~J}$

Change in momentum arses from impulse. at gear contact $*$ raduis of gear wheal:

$$
\begin{array}{ll}
J: \quad & w J+I_{A B} \cdot 12=w^{\prime} J \tag{1}\\
2 J: & w 2 J-I_{C D} \cdot 30=\frac{w^{\prime}}{5} \cdot 2 J
\end{array}
$$

from (c) $I_{C D}=2 I_{A B}$

$$
\begin{aligned}
(1) \times 5: \omega 2 J-2 I_{A B} 30 & =\frac{\omega^{\prime}}{5} \cdot 2 \mathrm{~J} \\
(1) \times 5+(2): \omega 7 J+I_{A B} 60 & =5 \omega^{\prime} \mathrm{J} \\
& =\frac{27}{5} \omega^{\prime} \mathrm{J} \\
w^{\prime} & =\frac{35}{27} w
\end{aligned}
$$

e) $K E$ before $=\frac{1}{2}(J+2 J) \omega^{2}=\frac{1}{2} J \omega^{2} \cdot 3$

$$
\begin{aligned}
\text { LE after } & =\frac{1}{2} J \omega^{\prime 2}+\frac{1}{2} 2 J\left(\frac{\omega^{\prime}}{5}\right)^{2} \\
& =\frac{1}{2} J \omega^{2}\left(1+\frac{2}{5^{2}}\right) \\
& =\frac{1}{2} J \omega^{2}\left(\frac{35}{27}\right)^{2} \cdot \frac{27}{25}
\end{aligned}
$$

Hence fraction of $K E$ lost is $\frac{3-\left(\frac{35}{27}\right)^{2} \cdot \frac{27}{25}}{3}$

$$
=1-\frac{7.7}{3.27}=1-\frac{49}{81}=\frac{32}{81}
$$

Altenahre solution to QS
5 a) $\frac{\omega_{1}}{\omega_{3}}=\frac{n_{B}}{n_{A}} \times \frac{n_{1}}{n_{c}}=\frac{36}{12} \times \frac{30}{18}=5$
b) Because not all extend ingrates pars though (or are proallal t) the centre lines of strafes 1 and 4 .
c) $\frac{n_{B}}{n_{C}}=\frac{36}{18}=2$

ALSO, $n_{A}+n_{B}=n_{C}+n_{1}$, so all tech hove the save pitch, and $r \propto n$
$\therefore \frac{r_{13}}{r_{c}}=2$, and $J=0$ for Most 2
so $I_{C D}=2 \times I_{A B}$
d) 1: $\underbrace{}_{\leftarrow} w=12$
$\bigcirc 2 \omega^{\prime}$
4: () ω

() $)^{\omega^{\prime} / 5}$

So:

$$
\begin{align*}
& J\left(\omega^{\prime}-\omega\right)=12 I \tag{1}\\
& 2 J(\omega-\omega / 5)=60 I \tag{2}\\
& \omega^{\prime}(5+2 / 5)=\omega(2+5) \\
& \omega^{\prime}=\omega \times \frac{7 \times 5}{27}=1296 \omega
\end{align*}
$$

e)

$$
\begin{aligned}
& E_{1}=\frac{3}{2} J \omega^{2} \quad E_{2}=\frac{J}{2} \omega^{12}+J\left(\frac{\omega^{\prime}}{5}\right)^{2} \\
& \frac{E_{2}}{E_{1}}=\frac{54 \times 2}{100 \times 3}\left(\frac{\omega^{\prime}}{\omega}\right)^{2}=0.605 \\
& \therefore \text { Fraction } \operatorname{lort}=0.395
\end{aligned}
$$

nuts about pivot)

$$
\begin{aligned}
& \frac{m g l}{2}-\frac{m l}{2} \ddot{\theta} \frac{l}{2}-I \ddot{\theta}=0 \quad I=\frac{m l^{2}}{12} \\
& \frac{m g l}{2}=\ddot{\theta}\left(\frac{m l^{2}}{12}+\frac{m l^{2}}{4}\right) \\
& \dot{\theta}=\frac{m g l / 2}{m l^{2} / 3}=\frac{3}{2} \frac{l}{l}
\end{aligned}
$$

b) energy $P E$ lest $=K E$ gained

$$
\begin{aligned}
m g \frac{l}{2} & =\frac{1}{2} I \dot{\theta}^{2}+\frac{1}{2} m\left(\frac{\dot{\theta l}}{2}\right)^{2} \\
& =\frac{1}{2} m l^{2}\left(\frac{1}{12}+\frac{1}{4}\right) \dot{\theta}^{2} \\
\theta^{2} & =\frac{3 g}{l}, \dot{\theta}=\sqrt{\frac{3 g}{l}}
\end{aligned}
$$

c) reach ans.
sum fores vertrally Φ

$$
\begin{aligned}
& F_{v}-m y+m l \dot{\theta} / 2=0 \\
& F_{v}=m g-m l \frac{3}{2} g_{l} \cdot \frac{1}{2}=m g\left(1-\frac{3}{4}\right)=\frac{m g}{4}
\end{aligned}
$$

sum fores herroonklly \rightarrow.

$$
\begin{aligned}
& F_{1}+m \theta^{2} l / 2=0 \\
& F_{H}=-m l \\
& \left.=-\frac{3 g}{l}\right)=-\frac{3}{2} m g
\end{aligned}
$$

fores

max BM when $S=0$
sum forces vertically
$m^{\prime} g=m$

$$
\begin{aligned}
m^{\prime} g & =m^{\prime}\left(\frac{l+x}{2}\right) \ddot{\theta} \\
g & =\left(\frac{l+x}{2}\right) \frac{3}{2} g \operatorname{sun}^{\prime} \not \theta^{\prime} \\
4 l & =3 l+3 x \\
x & =\frac{l}{3}
\end{aligned}
$$

nos about centre of cut beam, man m^{\prime},

$$
\begin{aligned}
M & =I_{G}^{\prime} \ddot{\theta} \\
& =\frac{1}{12} m^{\prime}(l-x)^{2} \cdot \frac{3}{2} \frac{g}{t} \operatorname{sn} 9 \theta \\
& =\frac{1}{12} \cdot \frac{2 m}{3}\left(\frac{2}{3} l\right)^{2} \frac{3}{2} g l \\
M & =\frac{4 m g l}{12 \cdot 9}=\frac{m g l}{27}
\end{aligned}
$$

Altenahire solutha to $Q 6$
6 a)

T. M. A. pioort,

$$
m g \frac{L}{2}=m\left(\frac{L^{2}}{4}+\frac{L^{2}}{12}\right) \ddot{\theta} \rightarrow \ddot{\theta}=\frac{3 g}{2 l}
$$

G) $P E \operatorname{Cos} L=\frac{m g l}{2}, K E=\frac{m}{2}\left(\frac{c \dot{\theta}}{2}\right)^{2}+\frac{m L^{2}}{24} \dot{\theta}^{2}$

$$
\frac{g}{2}=\frac{C \theta^{2}}{6} \rightarrow \dot{\theta}=\sqrt{\frac{3 g}{L}}
$$

c) R.V., $V=m\left(g-\frac{L}{2} \ddot{\theta}\right)=\frac{m g}{4} \uparrow$
R.H., $H=m \frac{L}{2} \dot{\theta}^{2}=\frac{3 m y}{2} \leftarrow$
d) 17 ase $B 17$ where $S F=0$

$S=0$ wen $g=\frac{L+x}{2} \ddot{\theta}=\frac{3 g(l+x)}{2 L} \rightarrow x=\frac{L}{3}$
Now $m^{\prime}=\frac{2 m}{3}, I_{4}^{\prime}=\frac{2 m}{3} \frac{4 c^{2}}{4 \times 12}=\frac{2 m l^{2}}{81}$

$$
\therefore M=I_{4}^{\prime} \ddot{\theta}=\frac{m g c}{27}
$$

Examiners' comments

Question 1: planar kinematics (four-bar mechanism and slider)

Part (a) was answered well by most candidates. Recurring problems were: incorrect or missing direction information; diagrams too small (recommended scale was ignored); image theorem used but points CDE in wrong order; sliding velocity and angular velocity of BE calculated using total velocity of E rather than parallel and perpendicular components.

Part (b) was also answered well. Recurring problems were: centripetal acceleration neglected when calculating radial acceleration of E; centripetal acceleration along CD drawn in opposite direction. A small minority of solutions involved: assigning unit vectors; writing a position vector expression; and differentiating twice to determine acceleration components. Unfortunately, nearly all attempts using this approach were unsuccessful, due to inappropriate choice of unit vectors, incorrect position vector expression, or errors in differentiation. Solutions that involved tabulating the four acceleration components in each link were much more successful.

Question 2: energy and momentum (rocking beam)

This was the least popular question in section A. In part (a) most solutions involved either using an energy expression to find the velocity just before impact or Newton's $2^{\text {nd }}$ Law to find acceleration, then SUVAT to find time. A significant number of solutions assumed that the centre of mass accelerated downwards at $9.8 \mathrm{~m} \mathrm{~s}^{-2}$, ignoring any effect of the moment of inertia. Occasionally dimension a was confused with acceleration.

In part (b) most solutions recognised that moment of momentum was conserved about the point of impact (at B), but there was often difficulty in writing a correct expression for the moment of momentum before impact (wrong signs).

Part (c) proved to be quite difficult although many solutions recognised the need for a geometric progression and a sum to infinity. Some fruitless attempts involved summing energy lost in impacts and equating to the initial potential energy.

Question 3: planar kinematics and virtual power (crank and piston)

Part (a) involved finding velocities. Although a velocity diagram was not specifically requested (unlike Q1) almost all solutions included a diagram. A common error was to place point c incorrectly (midway between a and d instead of b and d). The term 'translational velocity' was sometimes misunderstood ('left-right velocity' rather than the intended 'not angular velocity'). Some solutions appeared to disregard the possibility that BD could have zero angular velocity.

The acceleration diagram in part (b) sometimes incorrectly included a non-zero centripetal acceleration term for BD, even though the angular velocity was correctly found in part (a) to be zero.

Most solutions to part (c) involved a virtual power equation, but a variety of errors meant few completely correct answers. Common problems were: neglect of direction information when finding the scalar product of force and velocity; inclusion of gravity (plan view); neglect of subscripts in the two mass parameters. A few solutions found the answer quickly by drawing a free body diagram of the piston and rod and considering equilibrium of forces in the AD direction.

Answers were often stated without direction information, or with units when there are none given in the question. Marking of this question was sometimes made difficult by untidy presentation, especially answers buried in the middle of the page and almost indistinguishable from the rest of the working.

Question 4: balancing of rotating shaft

Generally competently answered. Only a handful of candidates gave a full answer to part (a), but almost all were able to answer part (b) without difficulty (though several drew a figure or applied the cosine rule before realising that they were dealing with a 3:4:5 triangle). Most who solved part (c) did so by taking moments in two planes, though a few spotted how the central rotor could be 'split' between the outer ones, to simplify the problem.

Question 5: angular momentum

This question was not popular, and proved difficult for most who attempted it. Many candidates tried to answer part (c) by equating the ratio of the two impulses to the ratio of the two inertias; and of those who related it to the gear radii on shaft 2, only two even mentioned the (necessary, and provable) assumption that all the gears must have the same pitch. Only a handful of candidates approached part (d) in a sensible way, and just one was able to find the final angular velocities in the gearbox correctly.

Question 6: planar kinematics and bending moments

This question was answered by the vast majority of candidates. Nearly all candidates could answer parts (a) - (c) perfectly. Almost all candidates drew the bar in a 'general' position (as in the figure in the question) and a substantial majority then spent extra effort finding general expressions for angular velocity and acceleration, before evaluating these at the requested position. Several candidates clearly knew in advance that the maximum bending moment should be at the L/3 position, and checked/adjusted their algebra accordingly.

David Cole and Aylmer Johnson
20 June 2016

