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ENGINEERING TRIPOS PART IB

Thursday 2 June 2016 2 to 4

Paper 6

INFORMATION ENGINEERING: SOLUTIONS

Answer not more than four questions.

Answer not more than two questions from each section.

All questions carry the same number of marks.

The approximate number of marks allocated to each part of a question is indicated
in the right margin.

Answers to questions in each section should be tied together and handed in
separately.

Write your candidate number not your name on the cover sheet.

STATIONERY REQUIREMENTS
Single-sided script paper, graph paper, semilog graph paper

SPECIAL REQUIREMENTS TO BE SUPPLIED FOR THIS EXAM
CUED approved calculator allowed
Engineering Data Book

10 minutes reading time is allowed for this paper.

You may not start to read the questions printed on the subsequent
pages of this question paper until instructed to do so.
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SECTION A

Answer not more than two questions from this section.

1 (a) (i) The transfer function from u to y is given by the ratio G(s) = ȳ(s)/ū(s)
for ẏ(0) = y(0) = 0. Take the Laplace transform of the dynamical equation:

m(s2ȳ(s)− sy(0)− ẏ(0))+ c(sȳ(s)− y(0)) = ū(s)

Noting that ẏ(0) = y(0) = 0, we can rearrange to give:

(ms2 + cs)ȳ(s) = ū(s)

which then gives us the transfer function as

G(s) =
1

(ms2 + cs)
=

1
s(ms+ c)

=
1
m

s(s+ c
m)

[3]

[Many students forgot the role of initial conditions in the Laplace transform.]

(ii) Now let us expand the transfer function G(s) as partial fractions:

G(s) =
1
m

s(s+ c
m)

=
α

s
+

β

s+ c
m

From the expression above, we can write

G(s) =
(α +β )s+αc/m

s(s+ c
m)

We therefore have (α +β ) = 0 and αc/m = 1/m, giving α = 1/c and β =−1/c.

G(s) =
1
c

(
1
s
− 1

s+ c/m

)
We can now invert this to give (using databook identities for LTs):

g(t) = L−1(G(s)) = αL−1
(

1
s

)
+βL−1

(
1

s+ c
m

)
=

1
c

(
1− e−

c
m t
)

for t ≥ 0 .
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(iii) g(t) = 1
c

(
1− e−

c
m t
)

.

For each t ≥ 0 we have that 0≤ 1− e−
c
m t ≤ 1 therefore |g(t)|= g(t)≤ 1

c . Thus,

∫ T

0
|g(t)|dt =

∫ T

0
g(t)dt ≤

∫ T

0

1
c

dt ≤ T
c
.

It follows that any A > 0 and B = 1
c guarantee

∫ T
0 |g(t)|dt < A+BT . [5]

[The reasoning here was sometimes confused: a number of students did not find a
constant positive value for the bound A but defined A as a function of time T .]

(b) (i) The poles of T (s) are roots of the polynomial s2 +(1+ kp)s+ ki = 0:
If ki = (1+ kp)

2/4, this polynomial becomes

s2 +(1+ kp)s+
(1+ kp)

2

4
=

[
s+

1
2
(1+ kp)

]2

therefore we have roots/poles at s =−1
2(1+ kp). [3]

(ii) For kp = 0 the transfer function reads T (s) = ki
s2+s+ki

The poles occur at s = (1/2)(−1±√1−4ki), so that we have complex roots if
ki > 1/4 as given. Write the denominator as

s2 + s+ ki = s2 +2ξ ωns+ω
2
n

Thus, ω2
n = ki and 2ξ ωn = 1, that is,

ωn =
√

ki ξ =
1

2
√

ki
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For a damping factor of ξ = 0.5, we see that ki = 1 and therefore ωn = 1.
For ki = 1 we have a denominator of s2 + s+ 1 = (s+ 1/2)2 + 3/4. Recall that a
function of the form e−σt sinωt has a LT of ω

(s+σ)2+ω2 . Therefore our T (s) which

is of the form 1
(s+1/2)2+3/4

has an impulse response proportional to

e−σt sin(ωt)

where σ = 0.5 and ω =
√

0.75 =
√

3
2 . The impulse response is drawn below. [7]
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[Some candidates sketched the impulse response with a non-zero final bias;
oscillations and exponential decay were neglected.]

2 (a) (i) For D= 0, we have G(s) = 1/2s. Therefore G( jω) = 1
2 jω = 1

2ω
e− jπ/2.

Giving

|G( jω)|= 1
2ω

∠G( jω) =−π

2
Thus on the Bode diagram, the phase (semi-log plot of phase v frequency) is simply
a horizontal line at −π/2, as shown below.
The Bode diagram for magnitude is a log-log plot of frequency vs magnitude
(in dB): 20log |G( jω)| = −20log(2ω) = −20log2− 20logω . Thus we have a
constant slope of −20dB/dec (integrator), passing through −20log(2) =' −6dB
at ω = 1. This is also shown below.

The Nyquist diagram plots the real vs imaginary parts of G( jω). Since G( jω) =

− j/(2ω) has no real part, the plot will be along the imaginary axis (i.e. constant

Page 4 of 16 (cont.



Version JL/FF/3

phase of −π/2). From the Bode diagram, or just taking −1/(2ω) as ω → 0 from
above and below: we see that this line starts at lim

ω→0+
=−∞, passes through 0 since

lim
ω→∞

|G( jω)|= 0 then continues toward lim
ω→0−

= ∞.

The Nyquist diagram is shown below.
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Gain margin is ∞ (phase never reaches−π , so no intersection with the negative real
axis). [5]

[Many candidates did not sketch the Nyquist locus for ω ∈ (−∞,0).]

(ii) A delay introduces a phase shift of − jωD. The Nyquist locus will therefore
tend to the vertical asymptote crossing the real axis at −kD as ω ' 0 since
G( jω) ' k 1− jωD

jω = k
jωD − kD , while wrapping around the origin for ω → ∞.

The gain margin reduces as D increases. Above a certain delay threshold the system
becomes unstable. Bode and Nyquist diagrams for D = 10 and k = 1

2 are reported
below. [4]
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(iii) Input and output have same amplitude when at crossover frequency ωc = 0.5
since

|G( jωc)|=
∣∣∣∣e−Dωc j

2ωc j

∣∣∣∣= 1
2ωc

= 1 .

[3]

[A few students did not notice that delays do not affect the amplitude of the transfer
function.]

(iv) Constant unit input: ū(s) = 1
s . Output: ȳ(s) = G(s)ū(s) = 1

2s2 . Antitransform:

y(t) = 1
2t. The output increases with t and is therefore unbounded. [3]

[Most of the answers to this part mentioned the unboundedness of the Bode diagram
for s→ 0 instead of exploiting the direct argument based on the antitransform.]

(b) (i)

ȳc(s) = K(s)(r̄(s)− ȳ(s)

and

ȳ = G(s)ū(s) = G(s)[ȳc(s)+ d̄(s)]

Therefore: ȳ(s) = G(s)[ȳc(s)+ d̄(s)] and

ȳ(s) = G(s)K(s)(r̄(s)− ȳ(s))+G(s)d̄(s)

Giving

ȳ(s) =
G(s)K(s)

1+G(s)K(s)
r̄(s)+

G(s)
1+G(s)K(s)

d̄(s)

Therefore, our transfer functions are: G(s)K(s)
1+G(s)K(s) between r̄ a [5]
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(ii) The transfer function from r̄(s) to ȳ(s) is given by

Wr,y(s) =
kp
2s

1+ kp
2s

=

kp
2s

2s+kp
2s

=
kp

kp +2s
⇒ y(t) =Wr,y(0) = 1

at steady state. The transfer function from d̄(s) to ȳ(s) is given by

Wd,y(s) =
1
2s

1+ kp
2s

=
1
2s

2s+kp
2s

=
1

kp +2s
⇒ y(t) =Wd,y(0) =

1
kp

at steady state. By linearity, the steady state output is y(t) = Wr,y(0)+Wd,y(0) =
1+ 1

kp
. [5]

[Some students wasted time here by computing the complete output response instead
of the steady state response.]

3 (a) Laplace transforms:

sh̄1 = q̄0− q̄1 sh̄2 = q̄1− q̄2 q̄1 = α(h̄1− h̄2) q̄2 = β h̄2 .

Assuming h1(0) = h2(0) = 0.

Solve for h̄1:

sh̄1 = q̄0−α(h̄1− h̄2) ⇒ (s+α)h̄1 = q̄0 +α h̄2 ⇒ h̄1 =
q̄0 +α h̄2
(s+α)

Solve for h̄2:

sh̄2 = α(h̄1− h̄2)−β h̄2 = α

(
q̄0 +α h̄2
(s+α)

− h̄2

)
−β h̄2 =

= α
q̄0 +α h̄2− (s+α)h̄2

(s+α)
−β h̄2 = α

q̄0− sh̄2
(s+α)

−β h̄2

⇒
(

s+
αs

s+α
+β

)
h̄2 =

α

(s+α)
q̄0

⇒ s2 +(2α +β )s+αβ

s+α
h̄2 =

α

(s+α)
q̄0

⇒ h̄2 =
α

s2 +(2α +β )s+αβ
q̄0 .

Finally,
q̄2(s)
q̄0(s)

=
αβ

s2 +(2α +β )s+αβ
.
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[9]

[Most students were able to complete this part, but a number spent time in circular
derivations. Some candidates gave a correct final answer through inconsistent or wrong
derivations.]

(b) For r = 0,

K(s) G(s)
q0 q2

d

y

−
r u+

+

+

[7]

This part was well answered overall, although many students did not derive the simplest
block diagram, frequently adding an extra reference signal and a sum element.

(c) (i) Phase margin: at crossover frequency we have about 135 degrees, thus a
phase margin of 45 degrees. Gain margin: the phase is −π at about 3 rad/s.
At that frequency the magnitude is about −20 dB. Therefore, the gain margin is

1

10−
20
20

= 1
10−1 = 10. [3]

(ii) Both phase and gain margins increase as k decreases and vice versa. [2]

(iii) K(s) = k
s guarantees that K(s)G(s) has a pole at 0, achieving perfect rejection

y(t) = 0 of constant disturbances.
(The following detailed explanation was not requested in the paper).
Let D(s) be the denominator of G(s). For the second controller, the steady-state
response is given by

lim
s→0+

s
1

1+K(s)G(s)
L (H(t)) = lim

s→0+
s

1

1+ k
sD(s)

1
s

= lim
s→0+

sD(s)
sD(s)+ k

= 0

where the last identity follows from the fact that the roots of sD(s)+k are negative,
by asymptotic stability. [4]

[This part could be answered by considering the presence of an integrator in
the controller but some students took the longer route of computing the complete
response.]
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SECTION B

Answer not more than two questions from this section.

4 (a) IFT is

x(t) =
1

2π

∫ +∞

−∞

X(ω)eiωtdω

Therefore x(t−T ) is given by

x(t−T ) =
1

2π

∫ +∞

−∞

{X(ω)e−iωT}eiωtdω

So that
x(t−T )←→ X(ω)e−iωT

Shifting in the time domain causes multiplication by a complex exponential in the
frequency domain.

[4]

[Well done by most candidates]

(b) The signal x(t) can be written as the sum of 3 triangular pulses, as shown here

t
0

1

T/2−T/2 T−T

From part (a) we therefore know that, if λ (t) denotes the triangular pulse of height 1 and
width T centred on the origin,

X(ω) = Λ(ω)+Λ(ω)e−iωT/2 +Λ(ω)eiωT/2 = Λ(ω)[1+2cos(ωT/2)]

But we know that Λ(ω) = (T/2) sinc2
(

ωT
4

)
, so that

X(ω) = (T/2)[1+2cos(ωT/2)] sinc2
(

ωT
4

)
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Giving: f (T,ω) = (T/2)[1+2cos(ωT/2)].

[6]

[This part produced some surprising ways of going wrong. Although most candidates
split up the given function into the required 3 triangular pulses, some (not a negligible
number) inverted the centre pulse, ie simply segmented the function by area.]

(c) Note that the signal x(t) can be expressed as the difference of two triangular pulses
as shown below

t0

1

2

T/2−T/2 T−T t
0

1

2

T/2−T/2 T−T

Since x(t) can therefore be written as x(t) = 2λ (t/2)− λ (t), we can use the previous
formula for the FT of λ (t) to show that the FT of x(t) can be written as

X(ω) = 2T sinc2
(

ωT
2

)
− T

2
sinc2

(
ωT
4

)

[5]

[Almost all candidates achieved full marks on this part. Though some subtracted a shifted
triangle from the large triangle (ie again segmenting by area).]

(d) It is easier to draw X(ω) from the form in part (b). Clearly the zeros occur when
1+2cos(ωT/2) = 0 of sinc(ωT/4) = 0. In the first case we have cos(ωT/2) =−1/2,
giving ωT/2 = 2π/3 or ω = 4π/(3T ). In the second case we have ωT/4 = π , or
ω = 4π/T . The first zeros are therefore at ω = 4π/(3T ). The graph is drawn below
for T = 1: at ω = 0 the height is 3T/2, and our zeros occur at ω = (nπ ±π/3)/T and
ω = n4π/T . Therefore draw the graph by marking in the zeros, getting the mainlobe
shape correct and indicating a decaying amplitude of the sidelobes.
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The width of the mainlobe is therefore 8π
3T . [5]

[This part presented more of a challenge. Many candidates simply found the zeros of the
sinc function to find the width of the mainlobe – and many used part (c) instead of part (b)

to draw the function, which made things harder.]

(e) Parseval’s Theorem enables us to relate the integrals in the time and frequency
domains

∫ +∞

−∞

|x(t)|2dx =
1

2π

∫ +∞

−∞

|X(ω)|2dω

In this case, it is easier to do the integral in the time domain.

∫ +∞

−∞

|x(t)|2dx =
∫ −T/2

−T
[2(1+ t/T )]2dt + T +

∫ T

T/2
[2(1− t/T )]2dt

which can be written more concisely as

T +2
∫ T/2

0
[1−2t/T ]2dt = T −

[
T
3
(1−2t/T )3

]T/2

0

= T − T
3
(0−1) =

4T
3

Therefore giving (1/2π)
∫+∞
−∞ |X(ω)|2dω = 4T

3 . Since we have seen that the energy in the
mainlobe dominates the energy in the whole spectrum, we can approximate the mainlobe
energy with 4T

3 .

[5]

[Again, this part proved a challenge. While many got this entirely correct, some tried to
integrate in the frequency domain over the mainlobe width – which is hard!]
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5 (a) (i) To just avoid aliasing artefacts we need to sample at the Nyquist
frequency, which is twice the largest frequency in the signal, ie ωs = 2ωc. Thus
(2π)/T = 2ωc so that T = π/ωc. [3]

[Many people found this part easy, but a worrying number simply stated that the
sampling frequency should be twice ωc, rather than explicitly giving the sampling
period, which was what was asked for.]

(ii) The DFT is given by

Xk =
N−1

∑
n=0

xne
−2π jkn

N 0≤ k ≤ N−1

Multiply Xk by e jkm2π/N and sum over k:

N−1

∑
k=0

Xke
2π jkm

N =
N−1

∑
n=0

xn

{
N−1

∑
k=0

e
2π jk(m−n)

N

}
To evaluate the quantity in curly brackets, note that this is a geometric progression,

S = ∑
N−1
k=0 ark which is given by S = a1−rN

1−r . In our case a = 1 and r = e
2π j(m−n)

N .

If m = n then clearly the sum is N. Since e2π j(m−n) = 1, if m 6= n the sum is

1
1− e2π j(m−n)

1− e
2π j(m−n)

N

= 0

thus, we have
N−1

∑
k=0

Xke
2π jkm

N = Nxm

which gives us the formula for the inverse DFT. [9]

[This part presented trouble for many. Some had clearly revised the derivation and
rattled it off easily, some however tried to derive the IDFT via a continuous inverse
FT.]

(b) (i) The block diagram of the receiver consisting of a product modulator followed
by a low pass-filter is shown below. As a perfect copy of the carrier is available,
φ = 0. The output of the product modulator is

v(t) = y(t) · cos(2π fct) = αm(t)cos2(2π fct) = αm(t)
(

1+ cos(4π fct)
2

)
To recover m(t), we can use a low pass filter whose gain is a constant equal to 2

α
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in the frequency band [−W,W ], and zero outside. A non-ideal low pass filter would
have a transition band, i.e, a gentler roll-off to zero. [8]

[Generally well done]

× Low-pass
filter

cos(2πfct+ φ)

y(t)
v(t) m̂(t)

(ii) Here the phase φ = −45◦ = −π
4 . Therefore the product modulator output is

now (using 2(cosA+ cosB) = [cos(A+B)/2][cos(A−B)/2])

v(t) = αm(t)cos(2π fct)cos(2π fct− π

4
) =

1
2

αm(t)
(

cos(
π

4
)+ cos(4π fct− π

4
)
)

The output of the low-pass filter (with the same gain as in part (b)(i)) is therefore

m̂(t) = m(t)cos(π/4) =
m(t)√

2

Note that the receiver cannot compensate for the 1/
√

2 factor as it does not know
the phase la [5]

[Many lost marks here by not reading the question properly, ie if the carrier is used
in the receiver of part (b)(i), so failed to apply the 2

α
gain. One or two reverted to

Laplace transforms and got into quite a mess.]

6 (a) (i) The optimal detection rule is to choose the constellation symbol closest
to the observed Y . Thus

X̂ =


−2A if −∞ < Y ≤−A

0 if −A < Y ≤ A
2A if A < Y < ∞

[3]

[Mostly done well. Though a few candidates merely drew an unclear diagram with
no explanation. ]

(ii) The probability of error when −2A is sent is

P(X̂ 6=−2A | X =−2A) = P(Y >−A | X =−2A) = P(X +N >−A | X =−2A) =
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P(−2A+N >−A | X =−2A) = P(N > A) = P
(

N
σ

>
A
σ

)
= Q

(
A
σ

)
By symmetry, the probability of error when 2A is transmitted is the same.
The probability of error when 0 is sent is

P(X̂ 6= 0 | X = 0) = P(|Y |> A | X = 0) = P(|X +N|> A | X = 0)

= P(|N|> A) = 2Q
(

A
σ

)
As all the symbols are equally likely, the overall probability of detection error is

Pe =
1
3

P(X̂ 6=−2A | X =−2A)+
1
3

P(X̂ 6= 0 | X = 0)+
1
3

P(X̂ 6= 2A | X = 2A)

=
1
3

(
Q
(

A
σ

)
+2Q

(
A
σ

)
+Q

(
A
σ

))
=

4
3

Q
(

A
σ

)
.

[6]

[This was a very difficult question to mark. There were many very good answers,
but also a fair number of answers which had incorrect conditional probablility
expressions – of course, all ended up with the given solution.]

(iii) The average energy per symbol is

Es =
((−2A)2 +02 +(2A)2)

3
=

8A2

3
⇒ A2 =

3Es
8

.

Hence

Pe =
4
3

Q
(

A
σ

)
=

4
3

Q

(√
3Es

8σ2

)
.

[3]

[Mostly well done.]

(iv) Using the given approximation, the Pe above can be written as

Pe =
4
3

Q

(√
3Es

8σ2

)
≈ 2

3
e
− 3Es

16σ2 .

Setting this, equal to 10−5 and solving we get

Es

σ2 =
16
3

ln

(
2×105

3

)
= 59.24 (or 10log10 59.24) = 17.73 dB)

[3]

[Mostly well done.]
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(b) (i) The Hamming code can be decoded using the “parity circles" in Fig. (a)
below. If no errors are made, each of the three circles should have parity 0 – this is
because r1, . . . ,r4 are the four source bits and r5 = r1⊕ r2⊕ r3, r6 = r2⊕ r3⊕ r4,
and r7 = r1⊕ r3⊕ r4.

r1

r4

r2

r2

r3

r5

r6r7

0

1

1∗

1

1

00

(a) (b)

To decode r = [0, 1, 1, 1, 1, 0, 0], fill in the bits in circles as shown in Fig. (b).
The dashed circles indicate those for which the parity is 1. The decoder flips one
bit so that the parity of the dashed circles becomes 0, without changing the 0 parity
of the solid circle. This bit is r2, which should be flipped from 1 to 0. Therefore the
decoded codeword is [0, 0, 1, 1, 1, 0, 0]. [5]

(ii) The probability of correct decision for a BSC with crossover probability ε is
the probability that the channel flips one or zero bits. Hence

Pcorrect =

(
7
0

)
(1− ε)7 +

(
7
1

)
ε(1− ε)6

The probability of decoding error is

Pe = 1−Pcorrect = 1−
(

7
0

)
(1− ε)7−

(
7
1

)
ε(1− ε)6

For ε = 0.1, Pe = 0.1497. [5]

[If candidates did not run out of time, most achieved full marks on part (b).]

END OF PAPER
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