
Section A.

1. Variable change, divergence and curl
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Some students calculated the inverse Jacobian, and directly substituted the values of u and v as
a function of x and y to obtain the same result (because it cancels out). Although acceptable,
the solution above is the correct one. [15]

(c)Stokes

∮
B · dr =

∫
∇×B · dA

But B is in x− y plane, so that ∇×B is in z direction:∫
∇×B · dA =

∫
R

[∇×B]z dxdy

Bz =
∂By
∂x
− ∂Bx

∂y
= 0− 2y

x

Γ = −2

∫ ∫
R

y

x
dx dy = −2I = −1

2

A majority of students did use Stokes to obtain the integral above, and related it to the previously
calculated value of I. Minor issues appeared with sorting out the correct sign. [7]
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2. Gradients and divergence

(a)Divergence

u = ∇g = 3z2(x2 + y2)k + 2xz3i + 2yz3j

= 2z3(xi + yj) + 3z2(x2 + y2)k

In polar coordinates,
u = 2z3ρ êρ + 3z2ρ2 êk

∇ · u =
∂

∂x
(2xz3) +

∂

∂y
(2yz3) +

∂

∂z
(3z2(x2 + y2)) =

= 2z3 + 2z3 + 6z(x2 + y2) =

= 4z3 + 6z(x2 + y2) Cartesian

= 4z3 + 6zρ2 Polar

[5]

(b) Gauss: ∮
u · dA =

∫
V
∇ · u dV

In polar coordinates,∫
V
∇ · u dV =

∫ 1

−1

∫ 1

0
[4z3 + 6zρ2] 2πρ dρ dz

=

∫ 1

−1
4z3 dz

∫ 1

0
2πρ dρ+

∫ 1

−1
6z dz

∫ 1

0
2πρ3 dρ

Both integrals in z are odd in z, and so integrate to zero:∮
u · dA = 0

Attempts to integrate the fluxes using the full area can succeed, if care is taken to consider the
full area, but that approach produced errors, as some students did not consider the cancelation
of top and bottom of the cylinder.
(c) [6]∮
u · dA = 0 because ∇× u = ∇× (∇g) = 0 (cf. vector identity ∇× (∇φ) = 0 for any scalar

function φ. Alternatively, one can evaluate ∇×u using the definition of curl, to find ∇×u = 0.
[4]

(d)Stokes

From Stokes’ theorem,

Γ =

∮
C
u · dr =

∫
S∗
∇× u · dA

where S∗ is the surface that spans C. But ∇× u = 0, so Γ = 0. [4]

(e)Gradient potential

v = g∇g = g[
∂g

∂x
i +

∂g

∂y
j +

∂g

∂z
k] =

=
∂

∂x
(
1

2
g2)i +

∂

∂y
(
1

2
g2)j +

∂

∂z
(
1

2
g2)k =

= ∇(
1

2
g2)
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The scalar potential of v is defined by v = −∇φ (or it could be −φ), so that

φ = ±1

2
g2

We cannot introduce a vector potential for u because the field is not solenoidal, i.e. ∇ · u 6= 0. [6]
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3. Wave equation
(a). We have for the homogeneous solution p, using the intermediate variable ζ = x± ct:

∂p

∂x
=
df

dζ

∂ζ

∂x
+
dg

dζ

∂ζ
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∂2p

∂x2
=
d2f

dζ2
∂ζ

∂x
+
d2g

dζ2
∂ζ

∂x

∂p

∂x
= f ′ + g′

∂2p

∂x2
= f ′′ + g′′

∂p

∂t
=
df

dζ

∂ζ

∂t
+
dg

dζ

∂ζ

∂t

∂2p

∂t2
=
d2f

dζ2
∂ζ

∂x
+
d2g

dζ2
∂ζ

∂t

∂p

∂t
= cf ′ − cg′ ∂2p

∂t2
= c2f ′′ + c2g′′

f ′′ + g′′ = c2(f ′′ + g′′)

QED.
[4]

(b). Using p = X(x)T (t):

∂2p

∂x2
= X ′′T

∂2p

∂t2
= T ′′X

c2X ′′T = T ′′X

c2
X ′′

X
=
T ′′

T
= −ω2

We then solve two differential equations to yield:

X = A cos kx+B sin kx T = C cosωt+D sinωt

where k = ω/c.
[5]

(c) Since we are seeking a solution that vanishes at x = a, but not at x = 0, we choose to retain
the cosine term (other combinations will give different intermediate solutions, with the same
final solution), and incorporate the constant A into the other constants:

p(a, t) = cos(ka)(C cosωt+D sinωt) = 0

kna = (2n+ 1)π/2

ωn = knc = (c/a)(2n+ 1)(π/2)

p(x, t) = cos(ωnx/c)(C cosωnt+D sinωnt)

Check:

p(0, t) = cos(ωn0/a)(C cosωnt+D sinωnt)

p(a, t) = �����cosωna/c(C cosωt+D sinωt) = 0
[5]

(d). Now the solution at x = 0 must match the given unsteady function p0 sin Ωt. We write the
generic solution as a sum of all possible solutions:

p(0, t) = p0 sinωt =
∞∑
n=0

cos(ωnx/a)(C cosωnt+D sinωnt)
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which still obey the initial boundary conditions.

We can multiply both sides of the generic solution at x = 0 them by sines or cosines of ωmt and
integrate over a time T :

∫ T

0
p0 sin Ωt cosωmt dt =

∫ T

0

∞∑
n=0

cos(ωn0/a)︸ ︷︷ ︸
1

(Cn cosωnt cosωmt+Dn sinωnt cosωmt) dt

∫ T

0
p0 sin Ωt sinωmt dt =

∫ T

0

∞∑
n=0

cos(ωn0/a)︸ ︷︷ ︸
1

(Cn cosωnt sinωmt+Dn sinωnt sinωmt) dt

It can be shown that (from Maths datebook, Fourier decomposition)∫ T

0

∞∑
n=0

cos
2πpt

T
cos

2πqt

T
dt =

1

2
δpq∫ T

0

∞∑
n=0

sin
2πpt

T
sin

2πqt

T
dt =

1

2
δpq

so that if we make p = 2n + 1, q = 2m + 1,
c

a

π

2
=

2π

T
, or T = 4a/c, this corresponds to the

Fourier decomposition of p0(t), and

Cn =
c

2a

∫ 4a/c

0
p0(t) cos(2n+ 1)

π

2

c

a
t dt

Dn =
c

2a

∫ 4a/c

0
p0(t) sin(2n+ 1)

π

2

c

a
t dt

[7]

(e) For a step function at the origin, the step wave will propagate unchanged at the speed of
sound through the tube, and reflect at the end, where there is a pressure node. The solution
can be approximated by using the same method in (d), where the step function is represented
as the sum of harmonics in the corresponding series solution. [4]
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exact	  solu+on	  

t	  

Fourier	  representa+on	  of	  	  
p0(t)=H(0,t)	  
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Section B

4. QR decomposition and Least-Squares Solution

(a) A is a 3 × 2 matrix, which can be decomposed into A = Q ·R. where Q is a 3 × 3 matrix
and R a 3× 2 upper triangular matrix (where the bottom (3-2) rows of R are zero. Thus

R

[
c
d

]
= QTv

As R is upper-triangular it is then straight-forward to solve by substitution. [3]

(b) The first column is simply the normalised version of the first column of A and r11 = 3

q1 =
1

3

 2
1
−2


Projecting the second column and subtracting yields

q2 =
1

3

 1
2
2


The final column is required to be orthogonal to the other two. Thus

Q =
1

3

 2 1 2
1 2 −2
−2 2 1

 ; R =

 3 2
0 2
0 0


[8]

(c) The problem can be solved by obtaining the sum squares of the residuals, which leads to:
Rc = QTv. Solving yields (ignoring last column)[

3 2
0 2

] [
c
d

]
=

1

3

[
−11

8

]
so that

c = −19/9; d = 4/3

[6]

(d) For the squared error to be zero, then the last row of (qT)3v = 0. For a solution

[
2 −2 1

]  x
y
z

 = 2x− 2y + z = 0

Thus any point lying on the plane will have zero squared error. [8]
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5. Sum of random variables and moment generating functions

(a): differentiating the expression yields

g′(s) = λ exp(−λ(1− s))

Thus mean is λ. Differentiating again yields

λ2 exp(−λ(1− s))

Thus the variance is

σ2 = λ2 + λ− λ2 = λ

[5]

(b): the general form is to convolve the two distributions. In this case one is discrete the other
continuous. The form must be

pz(Z) =
∞∑
X=0

px(X)py(Z −X)

Thus the distribution is continuous [4]

(c)(i): The MGF can be written

gy(s) =

∫
py(x) exp(−sx)dx

=

∫
1√

2πσ2
exp

(
− 1

2σ2
(x2 − 2xµ+ µ2 + 2sxσ2)

)
dx

=

∫
1√

2πσ2
exp

(
− 1

2σ2
((x− (µ− sσ2))2 − s2σ4 + 2sσ2µ)

)
dx

= exp
(
s2σ2/2− sµ)

)
[7]

(c)(ii) Differentiating this expression yields

g′z(s) = (sσ2 − µ− λ exp(−s)) exp
(
s2σ2/2− sµ+ λ(exp(−s)− 1)

)
Thus the mean is

µz = −g′z(0) = µ+ λ

as expected. The second differential is

g′′z (s) = (σ2 + λ exp(−s)) exp
(
s2σ2/2− sµ+ λ(exp(−s)− 1)

)
+(sσ2 − µ− λ exp(−s))2 exp

(
s2σ2/2− sµ+ λ(exp(−s)− 1)

)
equating to zero yields and subtracting the µ2z

σ2 + λ+ (µ+ λ)2 − (µ+ λ)2 = σ2 + λ

These are the values of adding two independent variables. [4]

(d): an error occurs when the magnitude of the noise for any integer is greater than 0.5. For a
single integer this can be written as (using the symmetry)

2Φ(−0.5/σ)

The exception to this is that zero integer value is alway correctly recogised when the received
signal is negative (it will always be the closest). Thus the overall expression is

Pe = px(0)Φ(−0.5/σ) + 2
∞∑
x=1

px(X)Φ(−0.5/σ)

= (2− px(0))Φ(−0.5/σ)

= (2− exp(−λ))Φ(−0.5/σ)

[5]
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6. LU Decomposition and Matrix Sub-Spaces

(a) Performing LU decomposition yields z = 2 here 2 4 1 0
4 3 z 5
2 5 1 −1

 =

 1 0 0
2 1 0
1 −1/5 1

 2 4 1 0
0 −5 0 5
0 0 0 0


[8]

(b) To find the general solution find the solution - solve

Ly =

 −4
2
−6


Thus

y =

 −4
10
0


Then solve

Ux = y =

 −4
10
0


Thus setting x3 = 0 and x4 = 0

x =


2
−2
0
0


To compute the null-space

[
2 4 1 0
0 −5 0 5

]
1
0
x
y

 =

[
0
0

]

Hence one axis is 
1
0
−2
0


And the second basis

[
2 4 1 0
0 −5 0 5

]
0
1
x
y

 =

[
0
0

]

Hence the general solution is

x =


2
−2
0
0

+ α1


1
0
−2
0

+ α2


0
1
−4
1
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[10]

(c) The left null-space is perpendicular to the column-space - simply cross-product two columns 7
−1
−5


[4]

(d) The solution would change as there would be no left-null-space, and there would only be a
single null-space. [3]
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