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ENGINEERING TRIPOS PART IIA

Tuesday 23 April 2019 9.30 to 12.40

Module 3A1

FLUID MECHANICS I

Answer not more than five questions.

All questions carry the same number of marks.

The approximate percentage of marks allocated to each part of a question is

indicated in the right margin.

Write your candidate number not your name on the cover sheet.

STATIONERY REQUIREMENTS

Single-sided script paper

SPECIAL REQUIREMENTS TO BE SUPPLIED FOR THIS EXAM

CUED approved calculator allowed

Engineering Data Book

Attachments:

• Incompressible Flow Data Card (2 pages);

• Boundary Layer Theory Data Card (1 page);

• 3A1 Data Sheet for Applications to External Flows (2 pages).

10 minutes reading time is allowed for this paper at the start of
the exam.

You may not start to read the questions printed on the subsequent
pages of this question paper until instructed to do so.
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1 (a) In a radial polar (r,θ) co-ordinate system, a line vortex with circulation Γ is

placed at (R,0) in an otherwise stationary 2D flow. The fluid is inviscid, irrotational, and

incompressible. Show that, on a circle of radius R centred on the origin, the vortex induces

a velocity:

ur = −
Γ

4πR
cot

(

θ

2

)

; uθ =
Γ

4πR
.

[30%]

(b) A 2D circular vortex sheet with radius R and constant circulation per unit length γ,

shown in Fig. 1, has total circulation Γ. Calculate ur and uθ of the sheet itself. Describe

its motion. [20%]

(c) By considering a closed contour just outside the sheet, or otherwise, calculate ur

and uθ just outside the vortex sheet. [10%]

(d) Using Stokes’ theorem, or otherwise, calculate the velocity jump across the vortex

sheet. [10%]

(e) Sketch uθ(r) for this flow and for a line vortex with strength Γ centred on the origin. [20%]

(f) Discuss the advantages and disadvantages, if any, of using this vortex sheet to model

the flow around a rotating cylinder. [10%]

Fig. 1
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2 A line vortex of strength Γ is placed at (x,y) = (0,a) above a flat surface at y = 0 in a

flow that, at infinity, has speed U in the x-direction. The flow is inviscid, irrotational, and

incompressible.

(a) Find U for which the vortex remains stationary and write down the complex

potential, F(z), for this flow. [10%]

(b) Show that the stagnation points lie at z = ±
√

3a and sketch the streamlines of this

flow. [20%]

(c) Perform a conformal mapping such that this system models the flow around a vortex

trapped in a corner, as shown in Fig. 2. Write down the complex potential in the new co-

ordinate system. Find the positions of the stagnation points and sketch the streamlines of

this flow. [20%]

(d) Find the positions of the points with lowest pressure on the surfaces. [40%]

(e) Sketch the image system for this flow. Does the vortex remain stationary? [10%]

Fig. 2
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3 The Navier–Stokes equation in a reference frame rotating at angular velocityΩ is:

∂u

∂t
+u ·∇u+2Ω×u+Ω× (Ω×x) = −

1

ρ
∇p+ν∇2u (1)

(a) Using the identity Ω× (Ω× x) = −∇
(

(Ω× x)2/2
)

, where x is the position vector,

show that the fourth term in Eq. (1) can be absorbed into the pressure term by defining a

‘reduced pressure’, P. Interpret this result physically. [10%]

(b) For velocities of order U over lengthscales of order L, estimate the order of the ratio

of the inertial term (u ·∇u) to the Coriolis term (2Ω×u). [10%]

(c) A viscous fluid moves steadily between a flat plate at z = 0, rotating at Ω, and a

parallel flat plate at z = Z, rotating slightly faster. The flow has Re≫ 1 and consists of

an inviscid interior sandwiched between two boundary layers adjacent to the plates. In

Cartesian co-ordinates (x,y,z) with u = (u,!,w) the equations governing the velocity u in

the rotating frame are:

2Ω×u = −
1

ρ
∇P+ν∇2u

∇ ·u = 0

Write down expressions for the three components of ∇P in the inviscid interior in terms

of the inviscid flow uI = (uI ,!I ,wI). Deduce how uI varies with z in this flow. Comment

on the consequences of this result. [30%]

(d) Assuming that variations of u within the boundary layers are much more rapid in z

than in x or y, show that

−2Ω! = −
1

ρ

∂P

∂x
+ν

∂2u

∂z2

2Ωu = −
1

ρ

∂P

∂y
+ν

∂2
!

∂z2

[10%]

(e) Determine ∂P/∂x and ∂P/∂y within the boundary layer from their values in the

inviscid interior. Then, with i =
√
−1, define f = u−uI + i(!− !I) and derive an equation

for d2 f /dz2. Find the general solution to f and the order of the boundary layer thickness

in terms of ν and Ω. [40%]
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4 Consider a uniform flow with x-velocity U passing a 2D streamlined body at high

Reynolds number. Downstream of the body there is a thick wake in which u varies much

more rapidly with y than with downstream distance x.

(a) Stating your assumptions, apply the arguments of boundary layer theory to deduce

an approximate equation for the velocity (u,!) in the wake and state the boundary

conditions for u . [10%]

(b) The flow sufficiently far downstream from the body can be approximated by

u = U +u1, where |u1|≪U. Show that the momentum equation approximates to

U
∂u1

∂x
= ν

∂2u1

∂y2
.

and confirm that
∫ ∞
−∞ u1 dy does not vary in x. [10%]

(c) Seek a similarity solution of the form u1 = F(x) f (η); η = y/g(x) and show that

F(x) ∝ 1/g(x). [20%]

(d) Show that, in order to have a similarity solution, Ugg′/ν must be constant, where ′

denotes a derivative. Take this constant to be 1. [20%]

(e) Deduce the similarity equation f ′′+ f +η f ′ = 0. [20%]

(f) Show that u1 =
A

x1/2 e−Uy2/4νx, where A is a constant. [20%]
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5 (a) Thwaites defined two dimensionless parameters l and m for laminar

boundary layers, such that

l =
θ

U

(

∂u

∂y

)

wall
=
θ

U

τw

µ
, m =

θ2

U

(

∂2u

∂y2

)

wall

where U = U(x) is the free-stream velocity, µ is the fluid’s dynamic viscosity, τw is

the wall shear stress, and θ is the momentum thickness of the boundary layer.

(i) Show that m = −θ
2

ν
dU
dx , where ν is the fluid’s kinematic viscosity. [10%]

(ii) Use the momentum integral equation to deduce that

U
d(θ2)

dx
= 2ν[(H +2)m+ l] ,

where H is the shape factor. [20%]

(iii) Assuming that 2[(H +2)m+ l] = 0.45+6m , deduce that

θ2(x) = θ2(0)

(

U(0)

U(x1)

)6

+
0.45ν

U6(x)

∫ x

0
U5(x′)dx′ ,

where x is the location of interest. [20%]

(b) Consider the inviscid flow around a cylinder of radius a described by the velocity

potential φ(r,α) = −U∞(r+ a2/r) sinα, where α is the angle to the x-axis in radial polar

co-ordinates.

(i) Show that the velocity on the surface of the cylinder is uα = −2U∞(x/a). [20%]

(ii) For |x| ≪ a, find a leading order approximation for the square of the

momentum thickness, θ2 (x), in the region of the front stagnation point (0,a). [15%]

(iii) Comment briefly on any notable features of your expression. [15%]
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6 A flexible aerofoil consists of two straight sections connected by a hinge at x = c/2,

as shown in Fig.3.

(a) By expressing −2dyc/dx as a Fourier series in the usual manner for thin aerofoil

theory, find the first three coefficients, g0 , g1, and g2. You may assume that ψ is small. [40%]

(b) Calculate the sectional lift coefficient as a function of ψ and angle of attack α. You

may assume that α is small. [10%]

(c) For the case of α = 0, and for non-zero positive ψ, calculate the vortex sheet

strength as a function of x/c and sketch the upper and lower surface pressure coefficient

distributions. [25%]

(d) In order to achieve a certain level of lift, would it be better to increase α or ψ?

Explain your answer. [25%]

Fig. 3

Page 7 of 10 (TURN OVER



Version MPJ/2

7 An aircraft of wing-span 2s is entering a narrow ‘urban canyon’ of width 2b as

sketched in Fig.4. The wing loading is elliptical and the aircraft is sufficiently far from

the ground that the ground effect is negligible.

(a) Using the horseshoe vortex model, sketch the distribution of vortices modelling this

scenario. [20%]

(b) If the aircraft speed does not change, does it need to change angle of attack when

entering the canyon? [10%]

(c) Estimate the relative change in induced drag coefficient if b = 2s. [50%]

(d) What would your answer to (c) be if b→ s? Comment on the suitability of the

horseshoe vortex model in this scenario. [20%]

Fig. 4
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8 (a) The Tucker 48 car (Fig. 5) designed in 1944 had its aerodynamic form

designed in just 6 days without using a wind tunnel or computer. It had a suggested

drag coefficient CD = 0.27, which is better than many modern cars. Discuss how this low

CD value is obtained? Note that the engine is at the rear. [20%]

(b) Using approximate sketches show streamlines of the flow over the Tucker 48 and

hence estimate the corresponding surface pressure distributions. Label the rotational and

irrotational flow zones and areas likely to exhibit strong large-scale unsteadiness. [10%]

(c) Describe where cavity flows can be found on ground vehicles. Describe the

aerodynamics of cavity flows and how this links to noise. [20%]

(d) Discuss how small-scale features can be optimised to reduce drag and noise of road

vehicles. [20%]

(e) Quantitatively estimate the aerodynamic impact of wing mirrors on the engine

power requirements of the Tucker 48 car. Assume that the wing mirrors increase the

cross-sectional area of the car by 1% in the plane normal to its velocity. State all your

assumptions and note the design implications. [20%]

(f) For a road vehicle, briefly discuss the trade-off between aerodynamic drag, noise,

and cooling in relation to stagnation point location. [10 %]

Fig. 5

END OF PAPER
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Module 3A1: Fluid Mechanics I 
 

INCOMPRESSIBLE FLOW DATA CARD 
 
 

Continuity equation   ∇⋅u = 0  
 
 

Momentum equation (inviscid) ρ
Du
Dt

= −∇p + ρg  

 
D Dt   denotes the material derivative,  ∂ ∂t + u ⋅ ∇  

 
 
Vorticity    ω = curl u  
 
 

Vorticity equation (inviscid)  Dω
Dt

= ω ⋅∇u  

 
 

Kelvin's circulation theorem (inviscid) DΓ
Dt

= 0,   Γ = u∫ ⋅ dl = ω∫ ⋅ dS  

 
 
For an irrotational flow  

 
velocity potential φ   u =∇φ   and  ∇2φ  = 0 
 

Bernoulli's equation for inviscid flow:  

€ 

p
ρ

+ 1
2 u

2
+ gz +

∂φ
∂t

= constant   throughout flow field 

 
 
 

TWO-DIMENSIONAL FLOW 
 
 
Streamfunction ψ 

€ 

u =
∂ψ
∂y
, v = −

∂ψ
∂x

ur =
1
r
∂ψ
∂θ
, uθ = −

∂ψ
∂r

 

 
 
Lift force 

 
Lift / unit length = ρU(−Γ )

 
 
 
For an irrotational flow  

complex potential F(z)  

€ 

F(z) = φ + iψ  is a function of 

€ 

z = x + iy  
 

     

€ 

dF
dz

= u − iv  



TWO-DIMENSIONAL FLOW (continued) 
 
 

 

€ 

Summary of simple 2 - D flow fields

φ ψ F(z) u

Uniform flow (x - wise) Ux Uy Uz u =U,  v = 0

Source at origin m
2π

ln r m
2π

θ
m
2π

ln z ur =
m

2πr
,  uθ = 0

Doublet (x - wise) at origin −
µcosθ

2πr
µsinθ
2πr

−
µ

2πz
ur =

µcosθ
2πr2 ,  uθ =

µsinθ
2πr2

Vortex at origin Γ
2π

θ −
Γ

2π
ln r −

iΓ
2π

ln z ur = 0, uθ =
Γ

2πr
 

 
 
 

THREE-DIMENSIONAL FLOW 
 
 
 

€ 

Summary of simple 3 - D flow fields

φ u

Source at origin −
m

4πr
ur =

m
4πr2 ,     uθ = 0,    uψ = 0

Doublet at origin (with θ the 
angle from the doublet axis)

−
µcosθ
4πr2 ur =

µcosθ
2πr3 ,    uθ =

µsinθ
4πr3 ,    uψ = 0
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Boundary Layer Theory Data Card

Displacement thickness;

d⇤ =
Z •

0

⇣
1� u

U

⌘
dy

Momentum thickness;

q =
Z •

0

(U �u)u

U2 dy =
Z •

0

⇣
1� u

U

⌘
u

U
dy

Energy thickness;

dE =
Z •

0

(U2 �u
2)u

U3 dy =
Z •

0

✓
1�

⇣
u

U

⌘2
◆

u

U
dy

H =
d⇤

q

Prandtl’s boundary layer equations (laminar flow);

u
∂u

∂x
+ v

∂u

∂y
= � 1

r
d p

dx
+n ∂ 2

u

∂y2

∂u

∂x
+

∂v

∂y
= 0

von Karman momentum integral equation;

dq
dx

+
H +2

U
q dU

dx
=

tw

rU2 =
C
0
f

2

Boundary layer equations for turbulent flow;

u
∂u

∂x
+ v

∂u

∂y
= � 1

r
d p

dx
� ∂u0v0

∂y
+n ∂ 2

u

∂y2

∂u

∂x
+

∂v

∂y
= 0



3A1 Data Sheet for Applications to External Flows 
 
 

Aerodynamic Coefficients 
 
For a flow with free-stream density, ρ, velocity U and pressure ∞p : 
 

Pressure coefficient:  
2

2
1 U
ppcp

ρ
∞−

=  

 

Section lift and drag coefficients: ,)/(lift 
2

2
1 cU

mNcl
ρ

=  
cU
mNcd 2

2
1

)/( drag
ρ

=  (section chord c) 

 

Wing lift and drag coefficients: ,)(lift 
2

2
1 SU

NCL
ρ

=  
SU
NCD 2

2
1

)( drag

ρ
=  (wing area S) 

 
 

Thin Aerofoil Theory 
 
Geometry  Approximate representation 

 
 
Pressure coefficient: Ucp /γ±=  

Pitching moment coefficient: 22
2
1/)0about (moment  cUxcm ρ==  

Coordinate transformation: l = c(1+ cosφ) / 2, x = c(1+ cosθ ) / 2  

Incidence solution: γ (l) = −2Uα 1− cosφ
sinφ

, cl = 2πα, cm = cl / 4  

Camber solution: γ (l) = −U g0
1− cosφ
sinφ

+ gn sinnφ
n=1

∞

∑
$

%
&

'

(
) ,  where 

   ∫ ∫ "
#

$
%
&

'
−="

#

$
%
&

'
−=

π π

θθ
π

θ
π 0 0

0 cos2
2

,2
1

dn
dx
dy

gd
dx
dy

g c
n

c ; 

   or, equivalently:   −2 dyc
dx

= g0 + gn cosnθ
n=1

∞

∑  

  )(
8424

,
2 21

2
10

1
0 ggcgggcggc l

ml ++=!
"

#
$
%

&
++=!

"

#
$
%

&
+=

ππ
π  

  

)(xyy c=

y 

x 

c 
U 

α

y 

 

c 
U 

α

 

| | 

x, l 



Glauert Integral 
 

 ∫ =
−

π

θ
θ

πφ
θφ

φ

o

n
d

n
sin

sin
 cos cos

 cos
 

 
 

Line Vortices 
 

 

The Biot-Savart integral for a straight 
element of circulation Γ  gives a contribution 
to the velocity at P of  
       

          

€ 

Γ
4πd

(cosα + cosβ)  

 
perpendicular to the plane containing P and 
the element. 

 
 

Lifting-Line Theory 
 

Spanwise circulation distribution:  
 
 
 
 
Aspect ratio: SsAR /4 2=  

Wing lift: ∫
−

Γ=
s

s

dyyUL )(ρ  

Downwash angle: 

€ 

αd(y) =
1
4πU

dΓ(η) dη
y −η− s

s

∫ dη 

Induced drag: ∫
−

Γ=
s

s
di dyyyUD )()( αρ  

Fourier series for circulation: Γ(y) =Us Gn sinnθ,  with y = −scosθ
n odd
∑ ;  

  equivalently,  Gn =
2
π

Γ(y)
Us0

π

∫ sinnθ dθ  

Relation between lift and induced drag: 

  …+!!
"

#
$$
%

&
+!!

"

#
$$
%

&
=+=

2

1

5
2

1

3
2

53  where,)1(
G
G

G
G

A
CC

R

L
Di δ

π
δ

 

Elliptic lift distribution: Γ(y) = Γ0 1−
y2

s2
⎛

⎝
⎜

⎞

⎠
⎟

1 2

,  L = π
2
ρUΓ0s ,  αd =

Γ0
4Us

,  δ = 0  

d

P

βα

Γ

)(yΓ

-s s 
y 


