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 EGT2 
 ENGINEERING TRIPOS PART IIA 
______________________________________________________________________ 
 
 Monday 29 April 2019        9.30 to 11.10 
______________________________________________________________________ 
 
 
 Module 3A6 
 
 HEAT AND MASS TRANSFER 
 
 Answer not more than three questions. 
 

All questions carry the same number of marks. 
 
The approximate percentage of marks allocated to each part of a question is 
indicated in the right margin. 

 
 Write your candidate number not your name on the cover sheet. 

 
STATIONERY REQUIREMENTS 
Single-sided script paper 
 
SPECIAL REQUIREMENTS TO BE SUPPLIED FOR THIS EXAM 
CUED approved calculator allowed 
Engineering Data Book  
 
 
10 minutes reading time is allowed for this paper at the start of 
the exam. 
 
You may not start to read the questions printed on the subsequent 
pages of this question paper until instructed to do so.
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1 Consider the incompressible flow past a flat plate with zero streamwise pressure 
gradient and with the plate maintained at constant wall temperature Ts . 
 
(a) Sketch the development of the flow and thermal boundary layers from the leading 
edge of the plate. Explain the physical significance of the Prandtl number (Pr) and 
comment on the relative thicknesses of the flow and thermal layers, δ and δT .  
     [20%] 
(b) Define the Stanton number (St) and write down the relationship between the 
Stanton, Nusselt (Nu), Prandtl and Reynolds (Re) numbers and explain, briefly, the 
physical significance of each number. 
     [20%] 
(c) By control volume analysis, or otherwise, derive the integral equation relating the 
thermal thickness δθ  to the Stanton number using the definition: 
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where Y is the distance normal to the plate. 
     [20%] 
(d) Assuming cubic profiles for both the flow and thermal boundary layers, 
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and that the Prandtl number is unity, derive a relationship between δθ  and  δ . 
     [20%] 
(e) Given the Blasius result δ/X = 5.0/Re 1/2 derive a relationship between the Nusselt, 
Prandtl and Reynolds numbers and comment on the result. X is the streamwise distance. 
     [20%] 
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2 (a) By considering a small control volume ∆X by ∆Y derive the following 
transport equation for mass fraction Y i  
 

∂
∂𝑡𝑡

(ρ𝑑𝑑𝑖𝑖) +  ∇. (ρ𝑢𝑢�𝑑𝑑𝑖𝑖) = −∇. (𝐺𝐺𝑑𝑑𝑖𝑖) + ω𝚤𝚤̇  

 
Explain the physical significance of each of the terms. 
     [25%] 
(b) Show that summing this transport equation over all species present leads to the 
standard bulk mass conservation equation. 
     [20%] 
(c) Now, consider the flow over a flat plate and sketch the development of the flow 
and species concentration boundary layers. State Fick’s law and, hence, define the mass 
transfer coefficient, hm . Compare and discuss this definition relative to the heat transfer 
coefficient h and friction coefficient cf . 
     [20%] 
(d) Consider now the flow in a two-dimensional channel with constant width H. After 
a long, straight section the channel turns a 900 bend before continuing. Assume the flow 
and species concentration boundary layers are thin, that the boundary layers remain 
attached and that the bulk flow in the bend can be approximated by a free vortex 
velocity distribution. Where will the peak mass transfer from the channel to the flow 
take place? 
 
Given that the Sherwood number is related to the Schmidt and Reynolds numbers by the 
following, 
               Shx ~ Sc 1/3 Rex 4 /5 
 
estimate the relative peak mass transfer between two cases when the inner radius of the 
bend is equal to H and to 2H respectively and comment on the result. 
     [35%] 
 
 
 
 
 
 
 

 
(TURN OVER  
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3 (a) Two large plates are held at temperatures T1 and T2 . A thermocouple, 
modelled as a sphere of diameter DTC with emissivity εTC , is placed between the plates 
as shown in Fig.1. Radiative heat exchange brings the thermocouple and plates into 
radiative equilibrium. You may assume that the instantaneous temperature within the 
thermocouple, TTC, is spatially uniform and ignore the effect of its support structure.    

 (i) Show that the view factors from the thermocouple to each of the two plates 
FTC,1 = FTC,2 = 0.5 .  [10%] 

(ii) Draw an equivalent resistance network for the arrangement whilst the 
thermocouple is reaching thermal equilibrium and derive expressions for the 
various surface and space resistances.  [20%] 

(iii) Using the network, or otherwise, derive an expression for the net heat 
transfer to the thermocouple in terms of TTC, εTC, T1, T2, and DTC . [25%] 

(iv) Derive an expression for the equilibrium temperature of the thermocouple. [15%] 

(b) Once in equilibrium, the thermocouple arrangement in Part (a) is then exposed to a 
flow of air at Tair with average heat transfer coefficient h. 

 (i) Using your result from Part (a) (iii) derive an expression for the steady state 
difference (i.e. error) in temperature between the flow and the thermocouple. [10%] 

 (ii) For the case when Tair = 400 K, T1 = 500 K, T2 = 300 K, h = 50 W m−2 K−1 
and εTC = 0.5 evaluate the error (you will need to use an iterative method). [10%] 

 (iii) Suggest how this error could be reduced. [10%]  
 

 
 
 
 
 
 
 
 
 
 
 
 

(cont  
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Fig.1 
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4 A two-dimensional model of a circuit element is shown in Fig.2. It has uniform 
thermal conductivity λ. The lower edge, at y = 0, is held at uniform temperature Tb. A 
portion of the upper edge, y = H, from x = 0 to x = a is subject to a heat flux of �̇�𝑞 per 
unit width. All other edges are perfectly insulated. 
 

 

Fig.2 

(a) Derive an approximation for the temperature field, θ = T(x, y) − Tb , when a → W. 
Give your answer in terms of �̇�𝑞, a, W and λ. Is this an upper or lower bound 
estimate for the temperature in the general case? [10%] 

(b) Sketch isotherms and adiabats within the element for a = W and a << W.  [10%]     

(c) Considering a solution of the form θ = X(x)Y(y), use separation of variables to 
show that the temperature field in the element can be satisfied by the expression  

𝜃𝜃 = ∑ cos𝑚𝑚𝑛𝑛𝑥𝑥 (𝐴𝐴𝑛𝑛 sinh𝑚𝑚𝑛𝑛𝑦𝑦 + 𝐵𝐵𝑛𝑛 cosh𝑚𝑚𝑛𝑛𝑦𝑦)∞
𝑛𝑛=0    

 where  mn = nπ/W  and An and Bn  are undetermined constants. [40%] 

(d) Considering the y = constant boundaries, derive expressions for the constants  𝐴𝐴𝑛𝑛 
and  𝐵𝐵𝑛𝑛 in order to find a solution for the temperature field.  [40%] 
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