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EGT2
ENGINEERING TRIPOS  PART IIA

Wednesday 24 April 2019 2 to 3.40

Module 3C5
DYNAMICS

Answer not more than three questions.
All questions carry the same number of marks.

The approximate percentage of marks allocated to each part of a question is indicated
in the right margin.

Write your candidate number not your name on the cover sheet.

STATIONERY REQUIREMENTS
Single-sided script paper

SPECIAL REQUIREMENTS TO BE SUPPLIED FOR THIS EXAM
CUED approved calculator allowed

Attachment: 3C5 Dynamics and 3C6 Vibration data sheet (6 pages).
Engineering Data Book

10 minutes reading time is allowed for this paper at the start of
the exam.

You may not start to read the questions printed on the subsequent
pages of this question paper until instructed to do so.
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1 The motion of a rigid body is described by its linear momentum p and its moment
of momentum hp. The body is subject to an external force F ©) and to an external couple
Q(e). Moments are taken about a general moving point P whose motion is described by
the position vector rp.

(a) Beginning with Newton’s laws for a particle derive the standard results for the motion

of a rigid body:
i) F©=p [25%]
(i) Q© =hp+ripxp [50%]

(b) Show that a special result holds when P coincides at all times with the centre of
mass of the body. [10%]

(c) Show that a special result holds for moment of momentum about the contact point
P when a ball is rolling on a horizontal rotating turntable. [15%]
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2 A light rigid frame ABCD has four small particles each of mass m fixed at points
A, B, C and D as shown in Fig. 1. Relative to Cartesian axes Oxyz the coordinates of the
points are as follows: A is (a,0,2a); B is (a,0,0); C is (-a,0,0) and D is (-a,2a,0).

Find:

(a) the inertia matrix of the frame at O referred to axes (x, y, z); [30%]
(b) the (x,y,z) coordinates of the mass centre G of the frame; [10%]
(c) the inertia matrix at G referred to axes parallel to (x, y, z); [30%]
(d) the inertia matrix at B referred to axes parallel to (x, y, 2); [20%]
(e) one of the principal moments of inertia at B. [10%]

 _ :

Fig. 1
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3

(a)  Asolid ball of radius @ amd mass m is rolling without slip on the inner surface

of a vertical cylinder of radius R as shown in Fig. 2. The ball is in steady motion so that

the contact point P moves in a horizontal plane at speed vp.

(b)

(i)  Use a no-slip condition at P to determine constraints on the angular velocity
of the ball. [25%]

(ii) Find all components of the angular velocity of the ball. [25%]

Side view

Top view

Fig. 2

(i) Within the context of Lagrange’s equation, explain why the generalised
velocities ¢;() and the generalised displacements g;(¢) are considered to be
independent variables, even though the velocities can clearly be obtained as the
time derivatives of the displacements. [25%]

(ii) Give an example of a system in which the kinetic energy is a function of
both the velocities and the displacements of the system. Show that in general the
Lagrange equation for this type of system has the form

Gty ot =0 . =12 N
Z{aqian 7 8¢;0q; J} dqi ~ dqi

where the symbols have their usual meaning. Will the second term on the left hand
side of this equation provide damping to the system? [25%]
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4 A chain of length L and mass m per unit length hangs freely under gravity from a
fixed point. A horizontal excitation force F(¢) is applied to the base of the chain. Small
lateral (horizontal) displacement w(x, ¢) of the chain is modelled by a two term series so
that

w(x,1) = (x/L)q1(t) + (x/L)?qa()

where x is measured downwards from the top of the chain and ¢;(¢) and ¢,(¢) are
generalised coordinates. The potential energy of the chain is given by

1 L ow\?
VZE‘A P(X)(a) dx

where P(x) is the tension in the chain in the equilibrium position. The acceleration due to
gravity is g.

(a) Use Lagrange’s equation to show that the two equations for small motion of the
chain can be expressed in matrix forms as

[1/3 1/4] (ql) [1/2 1/3] (ql)
L + mg =
1/4 1/5|\g» 1/3 1/3|\q»

(b) If a single degree of freedom model is employed, using g(¢) alone, demonstrate

F

F [40%]

that the resulting equation of motion is identical to that of a hanging rigid rod, and can be
expressed in terms of the moment of inertia and the mass of the rod. Derive an expression
for the natural frequency of the chain using this model. [10%]

(¢c) Derive the natural frequencies of the chain using the two degrees of freedom ¢ (¢)
and ¢»(1). [35%]

(d) Exact results for the first two natural frequencies are known for the chain, and they
are given by w; = 1.202+/g/L and wy = 2.764/g/L . Comment on the accuracy of your
results in the light of these values, and explain how the model could be further improved. [15%]

END OF PAPER
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Part ITA Data sheet
Module 3C5 Dynamics
Module 3Cé6 Vibration

DYNAMICS IN THREE DIMENSIONS

Axes fixed in direction

(a) Linear momentum for a general collection of particles m; :

(b)

(c)

dp
ar =F©
where p = M vg, M is the total mass, vg is the velocity of the centre of mass and F(®) the

total external force applied to the system.
Moment of momentum about a general point P
Q© =(rg-rp) xp +hg
= h P+ r PXPD
where Q(© is the total moment of external forces about P. Here, hp and hg are the
moments of momentum about P and G respectively, so that for example

hp= Y (r,-rp)xm;Fi
[

=hg+(rG-re)xp
where the summation is over all the mass particles making up the system.

For a rigid body rotating with angular velocity w about a fixed point P at the origin of
coordinates

hp = frx(wxr)dm: lw

where the integral is taken over the volume of the body, and where

A -F -E Wy x
I=|-F B -D |, w=| % |, rz[y ,
-E -D C Wy, Z
and A= f(y2+zz)dm B= f(z2+x2)dm C= f(x2+y2)dm
D=fyzdm E=fzxdm F=fxydm

where all integrals are taken over the volume of the body.

Axes rotating with angular velocity £2

Time derivatives of vectors must be replaced by the “rotating frame” form, so that for
example

p +Qxp=F©
where the time derivative is evaluated in the moving reference frame.
When the rate of change of the position vector r is needed, as in 1(b) above, it is usually
easiest to calculate velocity components directly in the required directions of the axes.
Application of the general formula needs an extra term unless the origin of the frame is
fixed.
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Euler’s dynamic equations (governing the angular motion of a rigid body)

(a) Body-fixed reference frame:
Aw1-B-Cmws = Q1
Bwy—(C-A) w3 w1 = Q2
Cw3-(A-B)ywy o = 03
where A, B and C are the principal moments of inertia about P which is either at a fixed
point or at the centre of mass. The angular velocity of the body is @ = [w1, an, w3] and
the moment about P of external forces is Q@ = [Q1, Q2, O3] using axes aligned with the
principal axes of inertia of the body at P.
(b) Non-body-fixed reference frame for axisymmetric bodies (the "Gyroscope equations"):
AQI-(AB-Cw3) 2 = Q1
AQ:+(ASB-Cw3) Q2 = Q2

Cws = 03
where A, A and C are the principal moments of inertia about P which is either at a fixed
point or at the centre of mass. The angular velocity of the body is @ = [w1, wp, ws] and

the moment about P of external forces is Q = [Q1, @2, Q3] using axes such that w3
and Q3 are aligned with the symmetry axis of the body. The reference frame (not fixed

in the body) rotates with angular velocity £ =[€2, £, £] with 1=w; and Q=wn.

Lagrange’s equations

For a holonomic system with generalised coordinates g;
aldry or v
d | 34| ~oqi Y og = 4

where T is the total kinetic energy, V is the total potential energy, and Qj are the non-
conservative generalised forces.
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VIBRATION MODES AND RESPONSE

Discrete systems Continuous systems
1. The forced vibration of an N-degree-of- ~ The forced vibration of a continuous system
freedom system with mass matrix M and is determined by solving a partial differential
stiffness matrix K (both symmetric and equation: see p. 6 for examples.
positive definite) is
My+Ky=f

where y is the vector of generalised
displacements and f'is the vector of

generalised forces.
2. Kinetic energy
1 .t . 1 .2
L T=—|u"dm
T=>3'My : )

where the integral is with respect to mass
(similar to moments and products of inertia).

Potential energy
See p. 4 for examples.

1
Y =el Y
3. The natural frequencies w,, and The natural frequencies w, and mode
corresponding mode shape vectors g(”) shapes u,(x) are found by solving the
satisfy appropriate differential equation (see p. 4)

K™ = o 2 and boundary  conditions,  assuming
a T harmonic time dependence.

4. Orthogonality and normalisation

b_l(j)tMu(k) _ {0’ ji=Tg

‘ ) u]-(x)ukx m=1 .
kg {8 17 -k
w;, Jj=k

5. General response

The general response of the system can be The general response of the system can be

written as a sum of modal responses written as a sum of modal responses
N
: w(x,t)= D q;() u;j(x)
y(0 = Ya;0) ut = Ug(r) ; e
j=1

! . where w(x,t) is the displacement and ¢; can
ErE IS S ESnHOSE cqlumns = be thought of as the “quantity” of the jth
the normalised eigenvectors kt(J) and gj can mode.

be thought of as the “quantity” of the jth
mode.
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6. Modal coordinates g satisfy
g+ [diag(wf)] g=0
where y = Ugq and the modal force vector
Q-=U'f .
7. Frequency response function

For input generalised force f; at frequency

w and measured generalised displacement
yi the transfer function is

E’“"

nlw

(n)

H(j.k,o) =—’<=

\

(with no damping), or

u "y

g: Y k(n)

fi Do, +2iow,t, -

Yk

H(j.k,w)= >

(with small damping) where the damping
factor £ is as in the Mechanics Data Book

for one-degree-of-freedom systems.

8. Pattern of antiresonances

For a system with well-separated resonances
(low modal overlap), if the factor uj(")uk(")

has the same sign for two adjacent
resonances then the transfer function will
have an antiresonance between the two
peaks. If it has opposite sign, there will be
no antiresonance.

9. Impulse response

For a unit impulsive generalised force
fi= &(t) the measured response yy, is given

by

(n)y, ()

. N Lt] k
g(jkit)=yp()= Yy —L——

sinw,t
n=1 ©n
for t =0 (with no damping), or
N, (n), (n)
u\"uy
g(j,k,t) = E-& sinw,t e_w”:”t
n=1 ©n

for ¢ =0 (with small damping).
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Each modal amplitude g j(t) satisfies
. 2
gj+wjqj=0;

where Q] = ff(x,l’) uj(x) dm and f(x,t) is
the external applied force distribution.

For force F at frequency w applied at point
x, and displacement w measured at point y,
the transfer function is

w 1w, (X) uy (y)
H o i % 4
(xy w) F ; wﬂz_wi

(with no damping), or

Uy, (X) U, ()

242 ww,, -

H( X,y,m ——=E

(with small damping) where the damping
factor £, is as in the Mechanics Data Book

for one-degree-of-freedom systems.

(;07

For a system with low modal overlap, if the
factor u,(x)u,(y) has the same sign for two
adjacent resonances then the transfer
function will have an antiresonance between
the two peaks. If it has opposite sign, there
will be no antiresonance.

For a unit impulse applied at # = 0 at point x,
the response at point y is

n @n

for t = 0 (with no damping), or

glx,y,t) = 2 Un(X) 4 (Y) sin w,t ¢~ Onbnt
n Wn
for t =0 (with small damping).
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10. Step response

For a unit step generalised force For a unit step force applied at ¢ = 0 at point

0 <0  x, the response at point y is
i= 0 the measured response yy 1S S}
) t= h(x,y.t)= E”—Z”—y[l—coswnt]
given by - w;;
N o, ) . .
t = 0 (with no damping), or
h(j.k,t)=yp(t) = 2 [1- cosw,t] for #:20 (withmo ping)
n=1 h(t) zzw[l—coswnt[wncn’]
for ¢ =0 (with no dampmg), or n @n
N . (n), (n) for t =0 (with small damping).
u 'y
h{jk,t) = E-J—QE— [1 —COswy,t e_w”C"t]
n=1 Wp
for t =0 (with small damping).
Rayleigh’s principle for small vibrations
. . V_Y'Ky
The “Rayleigh quotient” for a discrete system isF = —’M where y is the vector of
y My

generalised coordinates, M is the mass matrix and K is the stiffness matrix. The equivalent
quantity for a continuous system is defined using the energy expressions on p. 6.

If this quantity is evaluated with any vector y, the result will be

(1) = the smallest squared frequency;

(2) < the largest squared frequency;

(3) a good approximation to w,% if y is an approximation to E(k)

(Formally, % is stationary near each mode.)
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GOVERNING EQUATIONS FOR CONTINUOUS SYSTEMS

Transverse vibration of a stretched string

Tension P, mass per unit length m, transverse displacement w(x,?) , applied lateral force
f(x,t) per unit length.

Equation of motion Potential energy Kinetic energy
2 2
92w 9w 1 ow 1 ( aw
—5 - P—5 = f(xt V==P|—| dx ==—m||—]| dx
" ot ox A 2 f( (?x) 2 f at

Torsional vibration of a circular shaft

Shear modulus G, density p , external radius a, internal radius b if shaft is hollow, angular
displacement 6(x,t), applied torque f(x,¢) per unit length.

Polar moment of area is J = {7z / 2)(a4 - b4).

Equation of motion Potential energy Kinetic energy
2 2 2 2
0“0 a°0 1 a0 1 a0
=5 - GJ—% = f(x,t V==GJ|| —| d&x =—pJ||—| dx
p ot ox Fe0) 2 J(ax) 2p f( at)

Axial vibration of a rod or column

Young’s modulus E, density p, cross-sectional area A, axial displacement w(x,t) , applied
axial force f(x,t) per unit length.

Equation of motion Potential energy Kinetic energy
2 2 2 2
dw d“w 1 w 1 dw
A - FEA = f(x,t ==FA[|—| dx =—=pA[|l—]| dx
P2 w2 ) 2 f(ax) 2P f(at)

Bending vibration of an Euler beam

Young’s modulus E, density p , cross-sectional area A, second moment of area of cross-
section /, transverse displacement w(x,z) , applied transverse force f(x,t) per unit length.

Equation of motion Potential energy Kinetic energy
2 4 2. \2 2
Iw Jw 1 I“w 1 ow
A + El = f(x,t ==Fl||—5| dr ==pA[l—| dx
AT T B F =100 25\ % ] 2" f( &t)

Note that values of I can be found in the Mechanics Data Book.
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