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Module 3C7

MECHANICS OF SOLIDS

Answer not more than three questions.

All questions carry the same number of marks.

The approximate percentage of marks allocated to each part of a question is
indicated in the right margin.

Write your candidate number not your name on the cover sheet.
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1 Under plane strain conditions, a strain field in Cartesian co-ordinates (x , y) is given
by:

εxx = A1x + A2xy + A3y2

εyy = B1 + B2x + B3y

γxy = C1x + C2y + C3xy

where Ai , Bi ,Ci (i = 1, 2, 3) are constants.

(a) Determine any constraints on Ai , Bi ,Ci to ensure that this represents a valid strain
field. [20%]

(b) Obtain expressions for the displacements u(x , y) and v(x , y) in the x and y
directions, respectively. [50%]

(c) Discuss the physical interpretation of the unknown integration constants in (b). [15%]

(d) If the boundary conditions are defined so that the origin is fixed, and that no point
along the x-axis can displace in the y-direction, which of Ai , Bi ,Ci and the integration
constants in (b) can be specified? [15%]
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2 (a) Show that the equilibrium of a circular disc of variable thickness h(r)
subjected to plane stress axisymmetric loading satisfies

d(hσrr )
dr

=
h
r

(σθθ − σrr ),

where σrr and σθθ are the radial and hoop stresses, respectively, at radius r . [25%]

(b) A variable thickness circular turbine blade of outer radius b is shrunk-fit onto a
rigid shaft of radius a resulting in an interfacial pressure p as shown in the cross-sectional
sketch in Fig. 1. The thickness of the turbine blade is h = Ha/r where H is the thickness
at the inner radius a. Show that the stress components

σrr = A −
B
r
, σθθ =

B
r
,

where A and B are constants, give an elastic solution. [15%]

(c) The turbine blade is made of a Tresca material with tensile yield strength Y .
Calculate the interfacial pressure p at the initiation of yield in the disc, assuming plane
stress conditions. [30%]

(d) Calculate an expression for the pressure at which the turbine disc becomes fully
plastic by considering the solution of the equation in part (a) for the compound quantity
hσrr . [30%]

H a

r

p
h(r)

b

Fig. 1
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3 A uniform horizontal beam of length L and rectangular cross-section (depth d and
width b) is shown in Fig. 2. It is simply supported at x = ±L/2. A downward load W is
uniformly distributed on the upper surface of the beam and the lower surface is traction-
free. The Airy stress function

φ =
W

20Lbd3

[
20x2y3 − 15d2x2y − 4y5 − 5d3x2 − y3(5L2 − 2d2)

]
is used to investigate the stresses within the beam.

(a) Confirm that this stress function gives stresses that satisfy the boundary conditions
on the lower and upper surfaces of the beam. [30%]

(b) Show that these stresses satisfy the boundary conditions at the simply supported
ends. [40%]

(c) What is the least value of the beam aspect ratio L/d, for the longitudinal tensile
stress at (x , y) = (0, d/2) to be within 1% of the value given by beam theory? [30%]

𝑥

𝑦

𝐿/2

𝑑

𝑏

Fig. 2
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4 Soil is loaded by a force F through a footing of width 2a in plane strain, as shown
in Fig. 3. The soil is assumed to be isotropic, incompressible, rigid-perfectly plastic with
a flow stress in shear of magnitude k.

(a) Explain the difference between the upper bound and lower bound theorems of
plasticity. [20%]

(b) Assume that tangential velocity discontinuities occur along the thin lines indicated
in Fig. 3. All triangular blocks shown are congruent isosceles triangles of fixed width a
and arbitrary height b.

(i) Consider the case of a “smooth” interface where there is no friction between
the footing and the soil. Derive an optimal expression for an upper bound on the
force F. [40%]

(ii) Now consider the extreme case of a “rough” interface with sticking friction
between the footing and the soil. Derive a revised optimal expression for an upper
bound on the force F. [30%]

(iii) What are the consequences for design of the results from (i) and (ii)? [10%]

2a

F

b

Fig. 3
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Engineering Tripos Part IIA          THIRD YEAR 

 

Module 3C7: Mechanics of Solids 

ELASTICITY  and  PLASTICITY  FORMULAE 

 

1. Axi-symmetric deformation :  discs, tubes and spheres 

  Discs and tubes    Spheres 

 Equilibrium σθθ  =  
d(rσrr)

dr    +  ρω2r2    σθθ  =  
1
2r 

d(r2σrr)
dr     

 Lamé’s equations (in elasticity) σrr  =  A  –  
B
r2   –  

3+ν
8   ρω2r2   –  

Eα
r2  ⌡⌠

c

r
rTdr    σrr  =  A  –  

B
r3  

      σθθ =  A  +  
B
r2   –  

1+3ν
8   ρω2r2   +  

Eα
r2  ⌡⌠

c

r
rTdr   –  EαT  σθθ  =  A  +  

B
2r3  

2. Plane stress and plane strain 

Plane strain elastic constants 21 ν−
= EE ; 

ν
νν
−

=
1

 ; ( )ναα += 1  

  Cartesian coordinates Polar coordinates 

Strains εxx  =  
∂u
∂x  εrr  =  

∂u
∂r   

  εyy  =  
∂v
∂y  εθθ  =  

u
r   +  

1
r 
∂v
∂θ  

  γxy  =  
∂u
∂y   +  

∂v
∂x  γrθ  =  

∂v
∂r   +  

1
r 
∂u
∂θ   –  

r
v  

 

Compatibility 
∂2γxy
∂x∂y      =    

∂2εxx
∂y2    +   

∂2εyy
∂x2   

∂
∂r  ⎩

⎨
⎧

⎭
⎬
⎫

r 
∂γrθ
∂θ     =   

∂
∂r  

⎩⎪
⎨
⎪⎧

⎭⎪
⎬
⎪⎫

r2 
∂εθθ
∂r    –  r 

∂εrr
∂r    +   

∂2εrr
∂θ2   

 

or (in elasticity  

with no thermal strains  
⎩⎪
⎨
⎪⎧

⎭⎪
⎬
⎪⎫∂2

∂x2  +  
∂2

∂y2   (σxx + σyy)   =  0 
⎩⎪
⎨
⎪⎧

⎭⎪
⎬
⎪⎫∂2

∂r2 + 
1
r 
∂
∂r + 

1
r2 
∂2

∂θ2  ( )σrr + σθθ  =  0  

or body forces) 

Equilibrium  
∂σxx
∂x    +  

∂σxy
∂y    =  0 

∂
∂r (rσrr)  +  

∂σrθ
∂θ    –  σθθ  =  0 

   
∂σyy
∂y    +  

∂σxy
∂x    =  0  

∂σθθ
∂θ    +  

∂
∂r (rσrθ)   +  σrθ  =  0 

 

∇4φ  =  0  (in elasticity) 
⎩⎪
⎨
⎪⎧

⎭⎪
⎬
⎪⎫∂2

∂x2  +  
∂2

∂y2  
⎩⎪
⎨
⎪⎧

⎭⎪
⎬
⎪⎫∂2φ

∂x2  +  
∂2φ
∂y2    =  0 

⎩⎪
⎨
⎪⎧

⎭⎪
⎬
⎪⎫∂2

∂r2 + 
1
r 
∂
∂r + 

1
r2 
∂2

∂θ2     

      ×   
⎩⎪
⎨
⎪⎧

⎭⎪
⎬
⎪⎫∂2φ

∂r2 + 
1
r 
∂φ
∂r + 

1
r2 
∂2φ
∂θ2      =  0 

Airy Stress Function σxx  =  
∂2φ
∂y2  σrr  =  

1
r 
∂φ
∂r   +  

1
r2 
∂2φ
∂θ2  

  σyy  =  
∂2φ
∂x2  σθθ  =  

∂2φ
∂r2  

  σxy  =  – 
∂2φ
∂x∂y  σrθ  =  – 

⎭
⎬
⎫

⎩
⎨
⎧

∂
∂

∂
∂

θ
φ

rr
1  



 

 

3. Torsion of prismatic bars 

   Prandtl stress function:     σzx  (= τx)  =  
y∂

∂ψ ,     σzy  (= τy)  =  – 
x∂

∂ψ  

   Equilibrium:      T   =  2 ∫
A

dAψ  

   Governing equation for elastic torsion:      βψ G22 −=∇    where  β  is the angle of twist per unit length. 

 
4. Total potential energy of a body 

       ∏  =  U  –  W 

   where     U  =  
1
2 
⌡⎮
⌠

V
ε~

T [D] ε~ dV    ,     W  = P~  T u~         and    [D]  is the elastic stiffness matrix. 

 

5. Principal stresses and stress invariants 

 Values of the principal stresses,  σP,  can be obtained from the equation 

       

⎪
⎪
⎪
⎪

⎪
⎪
⎪
⎪σxx – σP σxy σxz

σxy σyy – σP σyz

σxz σyz σzz – σP

   =  0 

This is equivalent to a cubic equation whose roots are the values of the 3  principal stresses, i.e. the possible values of  σP.   

Expanding:  σP3   –  I1 σP2  +  I2σP  –  I3   =   0   where  I1  =  σxx  +  σyy  +  σzz,   

       I2   =   
⎪
⎪
⎪
⎪

⎪
⎪
⎪
⎪σyy σyz

σyz σzz
   +  

⎪
⎪
⎪
⎪

⎪
⎪
⎪
⎪σxx σxz

σxz σzz
   +  

⎪
⎪
⎪
⎪

⎪
⎪
⎪
⎪σxx σxy

σxy σyy
          and           I3   =   

⎪
⎪
⎪
⎪

⎪
⎪
⎪
⎪σxx σxy σxz

σxy σyy σyz

σxz σyz σzz

 . 

6. Equivalent stress and strain 

 Equivalent stress  σ̄   =  
1
2  { }(σ1 – σ2)2  +  (σ2 – σ3)2  +  (σ3 – σ1)2  1/2 

 Equivalent strain increment  dε̄    = 
2
3  { }dε12  +  dε22  +  dε32  1/2 

 

7. Yield criteria and flow rules 

 Tresca 

 Material yields when maximum value of |σ1 – σ2|,  |σ2 – σ3|  or  |σ3 – σ1|   =  Y    =   2k, and then,    

   if  σ3  is the intermediate stress,   dε1 : dε2 : dε3   =  λ(1 : –1 : 0) where  λ  ≠ 0. 

 von Mises 

 Material yields when, (σ1 – σ2)2  +  (σ2 – σ3)2  +  (σ3 – σ1)2   =   2Y2  =  6k2, and then 

    
dε1
σ'1

      =     
dε2
σ'2

      =     
dε3
σ'3

       =    
dε1 – dε2
σ1 – σ2

    =    
dε2 – dε3
σ2 – σ3

    =    
dε3 – dε1
σ3 – σ1

     =   λ   =   
3
2 

dε̄
σ̄       . 
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