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Module 3C7
MECHANICS OF SOLIDS

Answer not more than three questions.
All questions carry the same number of marks.

The approximate percentage of marks allocated to each part of a question is

indicated in the right margin.
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STATIONERY REQUIREMENTS
Single-sided script paper

SPECIAL REQUIREMENTS TO BE SUPPLIED FOR THIS EXAM
CUED approved calculator allowed

Attachment: 3C7 formulae sheet (2 pages)

Engineering Data Book

10 minutes reading time is allowed for this paper at the start of
the exam.

You may not start to read the questions printed on the subsequent
pages of this question paper until instructed to do so.

Page 1 of 6



Version SDG/6

1 Under plane strain conditions, a strain field in Cartesian co-ordinates (x, y) is given
by:

Exx = Apx+Ayxy+ A3y2

Eyy = B + Byx + B3y

Yxy = Cix+Cy+ C3xy

where A;, B;, C; (i = 1,2, 3) are constants.

(a) Determine any constraints on A;, B;, C; to ensure that this represents a valid strain
field. [20%]

(b) Obtain expressions for the displacements u(x,y) and v(x,y) in the x and y
directions, respectively. [50%]

(c) Discuss the physical interpretation of the unknown integration constants in (b). [15%]

(d) If the boundary conditions are defined so that the origin is fixed, and that no point
along the x-axis can displace in the y-direction, which of A;, B;, C; and the integration
constants in (b) can be specified? [15%]
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2 (a) Show that the equilibrium of a circular disc of variable thickness h(r)
subjected to plane stress axisymmetric loading satisfies

d(hoy) _h
Y —(0gg — Trr)s
r r
where o and 0gg are the radial and hoop stresses, respectively, at radius 7. [25%]

(b) A variable thickness circular turbine blade of outer radius b is shrunk-fit onto a
rigid shaft of radius a resulting in an interfacial pressure p as shown in the cross-sectional
sketch in Fig. 1. The thickness of the turbine blade is 4 = Ha/r where H is the thickness
at the inner radius a. Show that the stress components

B B
O'rr:A__a gee = —,
r r
where A and B are constants, give an elastic solution. [15%]

(c) The turbine blade is made of a Tresca material with tensile yield strength Y.
Calculate the interfacial pressure p at the initiation of yield in the disc, assuming plane
stress conditions. [30%]

(d) Calculate an expression for the pressure at which the turbine disc becomes fully
plastic by considering the solution of the equation in part (a) for the compound quantity

hoyr. [30%]
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3 A uniform horizontal beam of length L and rectangular cross-section (depth d and
width b) is shown in Fig. 2. It is simply supported at x = £L/2. A downward load W is
uniformly distributed on the upper surface of the beam and the lower surface is traction-
free. The Airy stress function

b= [20x%y? - 154%x%y - 4y° = 5d°x* - (5L - 2d%)|

is used to investigate the stresses within the beam.

(a) Confirm that this stress function gives stresses that satisfy the boundary conditions
on the lower and upper surfaces of the beam.

(b) Show that these stresses satisfy the boundary conditions at the simply supported
ends.

(c) What is the least value of the beam aspect ratio L/d, for the longitudinal tensile
stress at (x,y) = (0, d/2) to be within 1% of the value given by beam theory?
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4 Soil is loaded by a force F through a footing of width 2a in plane strain, as shown
in Fig. 3. The soil is assumed to be isotropic, incompressible, rigid-perfectly plastic with
a flow stress in shear of magnitude k.

(a) Explain the difference between the upper bound and lower bound theorems of
plasticity. [20%]

(b)  Assume that tangential velocity discontinuities occur along the thin lines indicated
in Fig. 3. All triangular blocks shown are congruent isosceles triangles of fixed width a
and arbitrary height b.

(i)  Consider the case of a “smooth” interface where there is no friction between
the footing and the soil. Derive an optimal expression for an upper bound on the
force F. [40%]

(1)) Now consider the extreme case of a “rough” interface with sticking friction
between the footing and the soil. Derive a revised optimal expression for an upper

bound on the force F. [30%]
(ii1)) What are the consequences for design of the results from (i) and (i1)? [10%]
2a
lF
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Fig. 3
END OF PAPER
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Engineering Tripos Part IIA

THIRD YEAR

Module 3C7: Mechanics of Solids
ELASTICITY and PLASTICITY FORMULAE

1. Axi-symmetric deformation : discs, tubes and spheres

Equilibrium

Lamé’s equations (in elasticity)

2. Plane stress and plane strain

Plane strain elastic constants

Strains

Compatibility

or (in elasticity
with no thermal strains
or body forces)

Equilibrium

V4¢ = 0 (in elasticity)

Airy Stress Function

Discs and tubes Spheres
d(roy) 5 1 d(r2oy)
Ooo = —g, + PO %0 =2, dr
B 3+v Ea'’ B
orrzA—ﬁ—Tpaﬂﬂ—r—zferr Or=A-3
C
B 1+3v Ea” B
Goo= A+ 5 — g pwr? + 3 [rTdr — Eol Oop = A + 53
C
E=-Lt_  v="\ a=alitv)
1-v2 I-v

Cartesian coordinates

Jdu
E&x = 5
v
&y = ay
u v
Yy = dy * oox
2Ky 92exx 02eyy
axdy T 9y2 * a2

2 92
{a—xz + @} (Oxx + Oyy) =

=0
00xx aoxx
ox Yoy T 0
J0, [ile;
Yy Xy _
dy t+7x =0
2 2| Py
{8x2 + ayZ} {8)(2 + 6y2} =0
¢
Oxx = ayz
920
Oy = ox2
20
Oxy = ~ 0xdy

Polar coordinates

u
51'1':5

u 1 dv
€00 ;+;a_9

v Low v
"o = o +r807;

9”2 19 19
a2t rort2oe (O-”+O-ee): 0

i) 09
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0t - (rowe) + op = 0
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3. Torsion of prismatic bars
Prandtl stress function:  o0zx (= 7x) = al, Oy (=7y) = - W
dy ox

Equilibrium: T =2[yad
A

Governing equation for elastic torsion: ~ Vy=—2Gf where J is the angle of twist per unit length.

4. Total potential energy of a body

nm=uv-w

1
where U =3 j gT [Dlegdv , W =P T u and [D] is the elastic stiffness matrix.
1%

~

5. Principal stresses and stress invariants

Values of the principal stresses, op, can be obtained from the equation

Oxx — Op Oxy Oxz
Oxy Oyy — Op Oyz =0
Oxz Oyz Ozz — OpP

This is equivalent to a cubic equation whose roots are the values of the 3 principal stresses, i.e. the possible values of op.

3

Expanding: op® - [ O'p2 + hop - I3 = 0 where I} = 0xx + Oyy + Oy,

Oxx Oxy Oxz

Oyy Oyz Oxx Oxz Oxx Oxy

L = and I3 = | Oxy Oyy Oyz

Oyz Ozz Oxz Ozz Oxy Oyy

Oxz Oyz Ozz

6. Equivalent stress and strain

. _ 1 12
Equivalent stress & = "\ |5 {(01 - )2 + (or—03)? + (03— 01)2}

Eaqui ini = (2 2 2 2 112
quivalent strain increment de = 3 {dsl + d&? + des }

7. Yield criteria and flow rules

Tresca

Material yields when maximum value of o] — 0al, lop — 03l or los— o1l = Y = 2k, and then,
if o3 is the intermediate stress, dej:dey:de3 = A(1:-1:0) where 4 #0.

von Mises

Material yields when, (0] — 62)2 + (02 — 03)2 + (03— 01)2 = 2Y2 = 6k2, and then

ﬁ dey des der —dey dey —des dez —dey

61 T o2 T 03 T oi-om  o-03 _ 03-0 = A=

N W
cl'l(%l
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