Engineering Tripos, Part IA, 2023

# Paper 3 Electrical and Information Engineering 

Solutions

Section A: Prof T. Hasan
Section B: Prof O. Akan
Section C: Dr Q. Cheng

SECTION A

1. (short)
(1) Shert


Convecting the central $2 \Omega$ combination:

$$
R_{A}=R_{B}=R_{c}=\frac{2 \times 2+2 \times 2+2 \times 2}{2}=6 \Omega
$$



Convecting the somees to Nerton equivaleat


Combining the resistas in ponallel a curnent to voltage somce equivalents:


$$
V_{B A}=\frac{(4-3) \times 2}{3+2+2}=\frac{2}{7} \quad \text { Conent in } 4 \Omega \text { is }=\frac{2}{7 \times 4}=\frac{1}{14} \mathrm{Ap} \text {. }
$$

(2) Short


Reactances:

$$
\begin{aligned}
& \text { For } L_{1} \Rightarrow j \omega L_{1}=j \times 2 \pi \times 50 \times 19.1 \times 10^{-3}=j 6 \Omega \\
& \text { For } L_{2} \Rightarrow j \omega L_{2}=j \times 2 \pi \times 50 \times 50.92 \times 10^{-3}=j 16 \Omega \\
& \text { for } C \Rightarrow \frac{1}{j \omega C}=-j 8 \Omega
\end{aligned}
$$

$$
\begin{aligned}
\text { Total complex impedance } & =6+j 6+[(8+j 16) / 1 /(-j 8)] \\
& =6+j 6+4-j 12 \quad \begin{array}{l}
\text { This can be d } \\
\text { in calcutor in } \\
\text { Single step }
\end{array} \\
& =10-j 6 \Omega \quad \\
& =11.66 \angle-30.96^{\circ}
\end{aligned}
$$

Therefore curet magnitude is $\frac{230}{11.66}=19.72$ Amp

$$
\text { Phase }=30.96^{\circ} \text {. }
$$

(3) Short


Gain expression:
$v_{\text {in }} / R_{1}=-\frac{V_{\text {ont }}}{\left(R_{2} \| C_{2}\right)}$. (equating ounce at the virtual ground)

$$
v_{\text {in }}^{R_{1}} \text { }=\frac{-V_{1}+\left(1+j \omega C_{2} R_{2}\right)}{R_{2}}
$$

Gain $V_{\text {at/Vin }}=\frac{-R_{2}}{R_{1}\left(1+j \omega C_{2} R_{2}\right)}$.
At low frequmeies, the feedback is dominated by RL. Vows $/ /_{\text {in }}$ at low frequencies, Noun $/ V_{\text {in }}=-\frac{R_{2}}{R_{1}}=-c 0$. $-3 d B$ point, $1=\omega C_{2} R_{2}=2 \pi f G_{2} R_{2}$

$$
f=\frac{1}{2 \pi c_{2} R_{2}}=\frac{1}{2 \pi \times 20 \times 10^{-2} \times 10 \times 10^{3}}=0.795 \mathrm{MHz}
$$

Gain at $-3 a b=-\frac{10}{141 \angle 95^{\circ}}=-7.09 \angle-45^{\circ}$

(4) $($ long $)$

(a) There is no gate concent into the FET. Lin is also open to dc. $R_{2}$ therefore puts the gate to $O V$. The $I_{D} R_{3}$ dip accoses sets $V_{\text {as }}=-I_{D} R_{3}$. This biases the fiT. The choice of $R_{1}$, $R_{3}, I_{D}$ dictates the operating point.
(b) $R_{1} \& R_{3}$ to active the operating point:

$$
V_{a S}=-3 \mathrm{~V} \quad V_{D S}=8 \mathrm{~V} \quad T_{D}=3 \mathrm{~mA}
$$

with $g_{m}=6 \mathrm{~mA} / \mathrm{V}$ \& $r_{\alpha}=10 \mathrm{k} \mathrm{\Omega}, V_{D_{D}}=20 \mathrm{~V}$.

$$
\begin{gathered}
R_{3} \times I_{D}=-V_{G S}=3 . \\
R_{3}=\frac{3}{3 m A}=1 \mathrm{k}
\end{gathered}
$$

Also.

$$
\begin{aligned}
V_{D D} & =I_{D} R_{1}+V_{D S}+V_{S} \\
20 & =3 \times 10^{-3} \times R_{1}+8+3 \\
R_{1} & =\frac{9}{3 \times 10^{-3}}=3 \mathrm{k} \Omega
\end{aligned}
$$

(c) Small signal model


$$
\begin{gathered}
V_{g s}=U_{\text {in }} \quad U_{\text {ont }}=-g_{m} V_{g s}\left(R_{1} / r_{r d}\right) \\
\text { gain }=\frac{U_{\text {out }}}{U_{\text {in }}}=\frac{-g_{m} V_{g s}\left(R_{1} \| r d\right)}{U_{g s}}=-g_{m}\left(R_{1} \| r_{d}\right) \\
0 / p \text { impedance }=\left(R_{1} \| / r_{d}\right) \\
\text { ip impedance }=R_{2}
\end{gathered}
$$

(d) The low - 3db cut off is 20 tz for a 5 kn resistor.


The $\%$ section can be redrawn as:


$$
V_{\text {out }}=\frac{-g_{m} V_{g s} R_{\text {lond }}}{R_{\text {lond }}+\left(R_{1} \| r_{d}\right)+\frac{1}{j \omega C_{\text {out }}}}
$$

The real \& imaginary pant in the denominator are same. Therefore, $\quad \omega C_{\text {out }}=\frac{1}{R_{\text {lond }}+\left(R, / / r_{d}\right)}$

$$
\begin{aligned}
\text { Cont } & =\frac{1}{2 \pi \times 20 \times[5 k+(3 k 1110 k)]} \\
\text { Cont } & =1.089 \mu \mathrm{~F}
\end{aligned}
$$

(e) To maximize the signal power, Round = Output impedance. Gout remains machanged.

$$
\begin{aligned}
1.089 \times 10^{-6} & =\frac{1}{2 \pi \times f_{\text {new }} \times 2 \times(3 \mathrm{k} 1110 \mathrm{k})} \\
\text { frow } & =31.67 \mathrm{lz} .
\end{aligned}
$$

(5) (long)

We know $P=V I \cos \Phi$. Given, power of machine $P_{m}=200 \mathrm{~kW}$

$$
\begin{aligned}
& 200 \times 10^{3}=1 \times 10^{3} \times I \times 0.85 \\
& I=\frac{200}{0.85}=235.29 \text { Amp. }
\end{aligned}
$$

Feeder power loss, $P_{f}=I^{2} R=(239.29)^{2} \times 0.8$

$$
\begin{aligned}
& =44.290 \mathrm{~kW} \\
Q_{F}=I^{2} x_{F} & =(239.29)^{2} \times 1.6 \\
& =88.581 \mathrm{kVAR}
\end{aligned}
$$

Q of machine $Q_{M}=P_{M} \tan \phi$

$$
\begin{aligned}
& =200 \tan \left[\cos ^{-1}(0.85)\right] \mathrm{KVAR} \\
& =123.94 \mathrm{kVAR} .
\end{aligned}
$$

fo the some, $f=200+44.29=244.29 \mathrm{~kW}$.

$$
Q_{s}=88.58+123.94=212.52 \mathrm{kVAR}
$$

Apparent power $S_{S}=\sqrt{P_{S}^{2}+Q_{S}^{2}}$

$$
=323.8 \mathrm{kVA}
$$

Sonde voltage $V_{S}=\frac{323.8}{235.29}=1.376 \mathrm{kV}$.
(b) Machine terminal voltage $=1 \mathrm{kV}$.
for power factor correction, capacitor must generate the sane reactive power consumed by the machine, $Q_{m}$.

This is 123.94 KNAR.
Power $\frac{V^{2}}{X_{L}}=123.94 \times 10^{3}=(1000)^{2} \times 2 \pi \times 50 \times \mathrm{C}$

$$
c=\frac{123.94}{2 \pi \times 50 \times 1000}=394.51 \mu \mathrm{f}
$$

The now feeder cuneal $V I=200 \times 10^{3}$

$$
\begin{aligned}
I & =\frac{200 \times 10^{3}}{1000} \\
& =200 \mathrm{~A}
\end{aligned}
$$

New feeder pour $=200 \mathrm{~A}$.

$$
=32 \mathrm{kw} .
$$

(c) The some voltage is now set at 1 kV .

With the capacitor still connected, the madeline will now be a pungy resistive lond. Wee know that the packaging machine consumes 200 KW with lkV across it.
Hence, $200 \times 10^{3}=\frac{(1000)^{2}}{R} \Rightarrow R=5 \Omega$
We can truefore chaw the following equivalent circuit:


The voltage across the machine terminal is:

$$
=\frac{1000 \times 5}{|5.8+j 1.6|}=\frac{5000}{6.01}=83.94 \mathrm{Volts} .
$$

## SECTION B

## 6 (short)

(a) The signal exhibits a momentary state change when it is expected to stay intact primarily due to propagation delays in the circuit. Static 0 and 1 hazard occur when the signal is expected to stay at 0 and 1 , respectively.


Static 1-hazard


Static 0-hazard
(b)

|  | 00 | 01 | 11 | 10 |
| :---: | :---: | :---: | :---: | :---: |
| 00 | 1 | 1 | 0 | 0 |
| 01 | 1 | 1 | T | 1 |
| 11 | 0 | 0 | 1 | 1 |
| 1 n | 0 | 0 | $\underline{\overline{0}}$ | 0 |

This is the Karnaugh Map for function F. Clearly, for $\mathrm{D}=1$ and $\mathrm{C}=0, F=\bar{A}+A$ which corresponds to the static 1 hazard situation. To address this hazard, the terms corresponding to the red rectangle in the K-map above, i.e., $\bar{C} D$, could be added to the function F , i.e., $F=\bar{A} \bar{C}+$ $A D+\bar{C} D$

Similarly, we can obtain the complement of the function to see if there is a static 0 hazard, i.e., $\bar{F}=\bar{A} C+A \bar{D} \quad \rightarrow F=\bar{A} C+A \bar{D}=\bar{A} C \cdot \overline{A \bar{D}}=A \cdot \bar{A}$ when $\mathrm{C}=1, \mathrm{D}=0$. Hence, there is a static 0 hazard. To mitigate it, the terms corresponding to the blue rectangle in the K-map, i.e., $C \bar{D}$ could be added to the complement of the function F , i.e., $\bar{F}=\bar{A} \bar{C}+A D+C \bar{D}$.

## 7 (short)

(a) 4 states required as in the state diagram below and therefore 2 bistables will be sufficient to implement the circuit.

(b)

|  | Current State |  | Next State |  |  |  | Bistable Inputs |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :---: | :---: |
| $X$ | $A$ | $B$ | $A$ | $B$ | $J_{A}$ | $K_{A}$ | $J_{B}$ | $K_{B}$ |  |  |
| 0 | 1 | 1 | 1 | 0 | X | 0 | X | 1 |  |  |
| 1 | 1 | 1 | 1 | 1 | X | 0 | X | 0 |  |  |
| 0 | 1 | 0 | 1 | 0 | X | 0 | 0 | X |  |  |
| 1 | 1 | 0 | 0 | 1 | X | 1 | 1 | X |  |  |
| 0 | 0 | 1 | 0 | 0 | 0 | X | X | 1 |  |  |
| 1 | 0 | 1 | 1 | 1 | 1 | X | X | 0 |  |  |
| 0 | 0 | 0 | 1 | 0 | 1 | X | 0 | X |  |  |
| 1 | 0 | 0 | 1 | 1 | 1 | X | 1 | X |  |  |

## 8 (short)

(a) $2^{11} \mathrm{x} 8$ bits $=2048$ bits $=2 \mathrm{KBytes}$ is the capacity of the memory chip.
(b)
$\mathrm{D} 800_{\mathrm{H}} \rightarrow 1101|1,000| 0000 \mid 0000$
I
$\mathrm{DFFF}_{\mathrm{H}} \rightarrow \underbrace{1101\left|l_{1}^{1} 111\right| 1111 \mid 1111}$
5-bits CS 11-bits the address space
$\rightarrow \overline{C S}=\overline{A_{15} A_{14} \overline{A_{13}} A_{12} A_{11}}$

| Microprocessor | Memory Chip |
| :---: | :---: |
| 8 Data lines | 8 Data lines |
|  |  |
| $\mathrm{R} / \overline{\mathrm{w}}$ | $\mathrm{R} / \overline{\mathrm{w}}$ |
| $\mathrm{A}_{0}$ | $\mathrm{A}_{0}$ |
|  | $\mathrm{A}_{1}$ |
| $\mathrm{A}_{1}$ | $\mathrm{A}_{2}$ |
| $\mathrm{A}_{3}$ | $\mathrm{A}_{3}$ |
| $\mathrm{A}_{4}$ | $\mathrm{A}_{4}$ |
|  | $\mathrm{A}_{5}$ |
| $\mathrm{A}_{5}$ $\mathrm{~A}_{6}$ | $\mathrm{A}_{6}$ |
| $\mathrm{A}_{7}$ | $\mathrm{A}_{7}$ |
| $\mathrm{A}_{8}$ |  |
| ${ }_{\text {A }}^{9}$ | $\mathrm{A}_{0}$ |
|  | $\mathrm{A}_{1}$ |
| ${ }^{A_{10}}{ }_{10}$ |  |
| $\mathrm{A}_{12}$ | $\overline{\mathrm{CS}}$ |
| $\mathrm{A}_{13}$ |  |
| $\mathrm{A}_{14}$ |  |
| $\mathrm{A}_{15}$ |  |
|  |  |
| Address valid |  |

## 9 (long)

(a)

| Current State |  |  |  | Next State |  |  |  | $\mathrm{J}_{3}$ | $\mathrm{K}_{3}$ | $\mathrm{J}_{2}$ | $\mathrm{K}_{2}$ | $\mathrm{J}_{1}$ | $\mathrm{K}_{1}$ | $\mathrm{J}_{0}$ | K0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \mathrm{Q}_{3} \\ & \mathrm{Q}_{0} \\ & \hline \end{aligned}$ |  |  |  |  | Q |  |  |  |  |  |  |  |  |  |  |
| 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | X | 0 | X | 0 | X | 0 | X | 1 |
| 1 | 1 | 1 | 0 | 1 | 1 | 0 | 1 | X | 0 | X | 0 | X | 1 | 1 | X |
| 1 | 1 | 0 | 1 | 1 | 1 | 0 | 0 | X | 0 | X | 0 | 0 | X | X | 1 |
| 1 | 1 | 0 | 0 | 1 | 0 | 1 | 1 | X | 0 | X | 1 | 1 | X | 1 | X |
| 1 | 0 | 1 | 1 | 1 | 0 | 1 | 0 | X | 0 | 0 | X | X | 0 | X | 1 |
| 1 | 0 | 1 | 0 | 1 | 0 | 0 | 1 | X | 0 | 0 | X | X | 1 | 1 | X |
| 1 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | X | 0 | 0 | X | 0 | X | X | 1 |
| 1 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | X | 1 | 1 | X | 1 | X | 1 | X |
| 0 | 1 | 1 | 1 | 0 | 1 | 1 | 0 | 0 | X | X | 0 | X | 0 | X | 1 |
| 0 | 1 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | X | X | 0 | X | 1 | 1 | X |
| 0 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | X | X | 0 | 0 | X | X | 1 |
| 0 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | X | X | 1 | 1 | X | 1 | X |
| 0 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | X | 0 | X | X | 0 | X | 1 |
| 0 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | X | 0 | X | X | 1 | 1 | X |
| 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | X | 0 | X | 0 | X | X | 1 |
| 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | X | 1 | X | 1 | X | 1 | X |

(b)
$\mathrm{J}_{0}$

|  | 00 | 01 | 11 | 10 |
| :---: | :---: | :---: | :---: | :---: |
| 00 | 1 | X | X | 1 |
| 01 | 1 | X | X | 1 |
| 11 | 1 | X | X | 1 |
| 10 | 1 | X | X | 1 |

$J_{0}=1$
$\mathrm{K}_{0}$

$K_{0}=1$
$\mathrm{J}_{1}$

|  | $\mathrm{Q}_{1} \mathrm{Q}_{0}$ |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |
| 00 | 1 | 0 | X | X |
| 01 | 1 | 0 | X | X |
| 11 | 1 | 0 | X | X |
| 10 | 1 | 0 | X | X |

$$
J_{1}=\overline{Q_{0}}
$$

$\mathrm{J}_{2}$

|  | 00 | 01 | 11 | 10 |
| :---: | :---: | :---: | :---: | :---: |
| 00 | 1 | 0 | 0 | 0 |
| 01 | X | X | X | X |
| 11 | X | X | X | X |
| 10 | 1 | 0 | 0 |  |

$$
J_{2}=\overline{Q_{1}} \cdot \overline{Q_{0}}
$$

$\mathrm{J}_{3}$

|  | $\mathrm{Q}_{1} \mathrm{Q}_{0}$ |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 00 | 01 | 11 | 10 |
| 00 | 1 | 0 | 0 | 0 |  |
| 01 | 0 | 0 | 0 | 0 |  |
| 11 | X | X | X | X |  |
| 10 | X | X | X | X |  |

$$
J_{3}=\overline{Q_{2}} \cdot \overline{Q_{1}} \cdot \overline{Q_{0}}
$$

$\mathrm{K}_{1}$

|  | $\mathrm{Q}_{1} \mathrm{Q}_{0}$ |  |  |  |
| :---: | :---: | :---: | :---: | :---: |

$K_{1}=\overline{Q_{0}}$
$\mathrm{K}_{2}$

|  | $\mathrm{Q}_{1} \mathrm{Q}_{0}$ |  |  |  |
| :---: | :---: | :---: | :---: | :---: |

$K_{2}=\overline{Q_{1}} \cdot \overline{Q_{0}}$
$\mathrm{K}_{3}$

|  | $\mathrm{Q}_{1} \mathrm{Q}_{0}$ |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |
| 00 | X | X | X | X |
| 01 | X | X | X | X |
| 11 | 0 | 0 | 0 | 0 |
| 10 | 1 | 0 | 0 | 0 |

$$
K_{3}=\overline{Q_{2}} \cdot \overline{Q_{1}} \cdot \overline{Q_{0}}
$$

(c)

(d)


## SECTION C

10 (short)

$Q_{\mathrm{C}}$

$Q_{B L}+Q_{B R}=Q$
$Q_{A}=-Q_{B L} ; Q_{C}=-Q_{B R}$
(a) $D_{A} * A=Q_{A}=\alpha_{1} * A$
$\varepsilon_{\mathrm{r}} * \mathrm{E}_{\mathrm{AB}}=\alpha_{1} ; \varepsilon_{\mathrm{r}} * \mathrm{E}_{\mathrm{BC}}=\alpha_{2}$
$\mathrm{V}_{\mathrm{AB}}=\mathrm{E}_{\mathrm{AB}} * \mathrm{~d}_{1} ; \mathrm{V}_{\mathrm{BC}}=\mathrm{E}_{\mathrm{BC}} * \mathrm{~d}_{2} ;$
$\mathrm{E}_{\mathrm{AB}} * \mathrm{~d}_{1}=\mathrm{E}_{\mathrm{BC}} * \mathrm{~d}_{2} ;$
$\frac{\alpha_{1}}{\alpha_{2}}=\frac{d_{2}}{d_{1}}=2$
$Q_{A}=Q_{B L}=-2.0 \times 10^{-7} \mathrm{C}$
$Q_{C}=Q_{B R}=-1.0 \times 10^{-7} \mathrm{C}$
(b) $\mathrm{V}_{\mathrm{AB}}=\mathrm{V}_{\mathrm{BC}}=\mathrm{E}_{\mathrm{AB}} * \mathrm{~d}_{1}=\left(\alpha_{1} * \mathrm{~d}_{1}\right) / \varepsilon_{\mathrm{r}}=2.3 \times 10^{3} \mathrm{~V}$

11 (short)


The location that $B=0$ must be within the same plane with the three wires. Assure the location that $B=0$ is $x$ away from the central wire, and so the total $B$ can be given by:
$\mathrm{B}_{\text {total }}=\mathrm{B}_{1}+\mathrm{B}_{2}+\mathrm{B}_{3}$
$B_{\text {total }}=\frac{\mu_{0} I}{2 \pi x}+\frac{\mu_{0} I}{2 \pi(d+x)}-\frac{\mu_{0} I}{2 \pi(d-x)}$
Let $\mathrm{B}_{\text {total }}=0, x= \pm \frac{1}{\sqrt{3}} d= \pm 0.5773 \mathrm{~d}$;
$x=0$ would also be a solution.

## 12 (long)

(a) Electric filed:

At $R=1.0 \mathrm{~cm}$, inside the conducting sphere, so $E=0$;
At $R=3.0 \mathrm{~cm}$,
$E=\frac{Q}{4 \pi \varepsilon_{0} R^{2}}=3 \times 10^{5} \mathrm{~V} / \mathrm{m}$
At $R=6.0 \mathrm{~cm}$, outside the outer surface that got connected to earth, So $\mathrm{E}=0$.
(b) Capacitor of the concentric spheres:
$Q=C V ;$
$C=\frac{Q}{V}$
$V=\int \frac{Q}{4 \pi \varepsilon_{0} R^{2}} d r=\frac{Q}{4 \pi \varepsilon_{0}}\left(\frac{1}{R_{1}}-\frac{1}{R_{2}}\right)$
$C=\frac{4 \pi \varepsilon_{0}}{\frac{1}{R_{1}}-\frac{1}{R_{2}}}=4.49 \times 10^{-12} \mathrm{~F}$
(c) Total electrostatic energy:

$$
W=\frac{1}{2} C V^{2}=\frac{1}{2} Q V=1.01 \times 10^{-4} \mathrm{~J}
$$

