Engineering Tripos, Part IA, 2023 Paper 3 Electrical and Information Engineering

Solutions Section A: Prof T. Hasan Section B: Prof O. Akan Section C: Dr Q. Cheng

SECTION A

1. (short)

Converting the central 22 combination:

lombining the resistants in ponallel & current to voltage source equivalents:

Reactances: $Frr L_{1} \Rightarrow jWL_{1} = jX2\pi XS0 \times 19^{11}X10^{-3} = j6 \Omega$ $For L_{2} \Rightarrow jWL_{2} = jX2\pi XS0 \times 50^{\circ}92 \times 10^{-3} = jl6 \Omega$ $Frr C \Rightarrow \frac{1}{jWC} = -j8 \Omega$ $Total complex impedance = 6+j6+\left[(8+j16)||(-j8)\right]$ $= 6+j6+4-j12^{4}$ $Fris can be dom
in calcutar in a
Single Step
<math display="block">= 10-j6 \Omega$ $= 11^{\circ}66L-30^{\circ}96^{\circ}$ $Thue free current magnitude in \frac{230}{11.66} = 19.72 Arp$ $Phaze = 30.96^{\circ}.$

(a) Thue is no gate concert into the FET. Cin is also open to d:c. R_2 therefore puts the gate to OV. The $2_{D}R_{3}$ drop across Sets $V_{GS} = -I_{D}R_{3}$. This biases the FET. The choice of R_1 , R_3 , I_{D} dictates the operating point:

(a)
$$R_1 \ \& \ R_3 \ b$$
 achive the operating point:
 $V_{45} = -3V \ V_{55} = 8V \ I_5 = 3mA$
with $gm = 6mA/V \ \& \ V_{4} = 10k\Omega, \ V_{50} = 20V.$
 $R_3 \ \times I_D = -V_{45} = 3.$
 $R_3 = \frac{3}{3mA} = 1K$
 $A/So, \ V_{DD} = \ J_DR_1 + V_{DS} + V_S$
 $20 = 8 \times 10^3 \times R_1 + 8 + 3$
 $R_1 = \frac{9}{3X/0^{-5}} = 3 K.\Omega.$

(1) The low -3dB cut off is 20Hz for a 5K2 resistor.

The real & imaginary point in the denominator are same.
Thurefore, wCont =
$$\frac{1}{R_{\text{lond}} + (R_1 || r_d)}$$

Cont = $\frac{1}{2\pi \times 20} \times [SK + (3K1110K)]$
Cont = 1:089 fbf

(c) To maximize the signal power, kind = Output impedance. Cont remains unchanged. $1.089 \times 10^{-6} = \frac{1}{2\pi \times f_{new} \times 2\times (3 \times 1110 \text{ k})}$ frum = 31.67 Hz. (5) (long) We know P=VICOS\$. Criven, poner of machine Pm = 200 KW $200 \times 10^3 = 1 \times 10^3 \times 7 \times 0.85$ $I = \frac{200}{1.80} = 235.29$ Amp. feeder power loss, Pr = I'R = (239'29) X0'8 =44.290 KW $Q_F = I^2 X_F = (239.29) \times 1.6$ = 88'581 KVAR Q of machine Qu = Pon tan \$ = 200 tan [cos " (0.85)] XVAR =123:94 KVAR. For the somee, f = 200 + 44:29 = 244.29 kW. Q = 88.58 + 123.94 = 212.52 KVAR Apparent power $S_s = \sqrt{P_s^2 + Q_s^2}$ = 323.8 KVA Somce voltage $V_5 = \frac{323.8}{235.29} = 1.376 \text{ kV}.$ (5) Machine terrinal voltage = 1 KV. For power factor correction, capacitor must gennate the

same reactive power consumed by the machine, Qm.

This is 123.94 KVAR.

Power
$$\frac{V^{2}}{X_{L}} = 123.94 \times 10^{3} = (1000)^{2} \times 2\pi \times 50 \times 2\pi}{C}$$

 $C = \frac{123.94}{2\pi \times 50 \times 1000} = 394.51 \text{ MF}$
The new feeden curvet $VI = 200 \times 10^{3}$
 $I = \frac{200 \times 10^{3}}{1000}$

New feeder pour loss =
$$(200)^{7} \times 0.8$$

= 32 kW.

© The source voltage is now set at
$$lkV$$
.
With the capacitor still connected, the machine will now be a
purely resistive load. We know that the packaging
machine consumes 200 kW with lkV across it.
Hence, $200 \times 10^3 = \frac{(1000)^7}{R} \Rightarrow R = 5 R$
We can therefore draw the following equivalent
circuit:
 $(0.8+j1.6)$
 $lovor$
The voltage across the machine terminal is:
 $= \frac{1000 \times 5}{[5.8+j1.6]} = \frac{5000}{6.01} = 831.94$ Volts.

SECTION B

6 (short)

(a) The signal exhibits a momentary state change when it is expected to stay intact primarily due to propagation delays in the circuit. Static 0 and 1 hazard occur when the signal is expected to stay at 0 and 1, respectively.

⁽b)

CD AB	00	01	11	10
00	1	1	0	0
01	1	1	1	1
11	0	0	1	1
10	0	0	0	0

This is the Karnaugh Map for function F. Clearly, for D=1 and C=0, $F = \overline{A} + A$ which corresponds to the static 1 hazard situation. To address this hazard, the terms corresponding to the red rectangle in the K-map above, i.e., \overline{CD} , could be added to the function F, i.e., $F = \overline{AC} + AD + \overline{CD}$

Similarly, we can obtain the complement of the function to see if there is a static 0 hazard, i.e., $\overline{F} = \overline{AC} + A\overline{D} \rightarrow F = \overline{AC} + A\overline{D} = \overline{AC} \cdot A\overline{D} = A \cdot \overline{A}$ when C=1, D=0. Hence, there is a static 0 hazard. To mitigate it, the terms corresponding to the blue rectangle in the K-map, i.e., $C\overline{D}$ could be added to the complement of the function F, i.e., $\overline{F} = \overline{AC} + AD + C\overline{D}$.

7 (short)

(a) 4 states required as in the state diagram below and therefore 2 bistables will be sufficient to implement the circuit.

(b)

	Currer	nt State	Next State Bistable Inp		Input	S		
X	Α	В	Α	В	J_A	KA	J_B	K_B
0	1	1	1	0	Х	0	Х	1
1	1	1	1	1	Х	0	Х	0
0	1	0	1	0	Х	0	0	Х
1	1	0	0	1	Х	1	1	Х
0	0	1	0	0	0	Х	Х	1
1	0	1	1	1	1	Х	Х	0
0	0	0	1	0	1	Х	0	Х
1	0	0	1	1	1	Х	1	Х

8 (short)

(a) $2^{11}x8$ bits = 2048 bits = 2KBytes is the capacity of the memory chip.

(b)

$$D800_{H} \rightarrow 1101 | 1000 | 0000 | 0000$$

DFFF_H $\rightarrow 1101 | 1111 | 1111 | 1111$
5-bits CS 11-bits the address space

.

$$\rightarrow \overline{CS} = \overline{A_{15}A_{14}\overline{A_{13}}A_{12}A_{11}}$$

9 (**long**)

(a)

Cui	rrent	State	;	Ne	xt Sta	ate									
Q3	Q2	Q_1		Q^+	Q^+_2	Q^+_1		J_3	K ₃	J_2	K_2	J_1	\mathbf{K}_1	\mathbf{J}_{0}	K_0
Q_0				Q^+)										
1	1	1	1	1	1	1	0	Х	0	Х	0	Х	0	Х	1
1	1	1	0	1	1	0	1	Х	0	Х	0	Х	1	1	Х
1	1	0	1	1	1	0	0	Х	0	Х	0	0	Х	Х	1
1	1	0	0	1	0	1	1	Х	0	Х	1	1	Х	1	Х
1	0	1	1	1	0	1	0	Х	0	0	Х	Х	0	Х	1
1	0	1	0	1	0	0	1	Х	0	0	Х	Х	1	1	Х
1	0	0	1	1	0	0	0	Х	0	0	Х	0	Х	Х	1
1	0	0	0	0	1	1	1	Х	1	1	Х	1	Х	1	Х
0	1	1	1	0	1	1	0	0	Х	Х	0	Х	0	Х	1
0	1	1	0	0	1	0	1	0	Х	Х	0	Х	1	1	Х
0	1	0	1	0	1	0	0	0	Х	Х	0	0	Х	Х	1
0	1	0	0	0	0	1	1	0	Х	Х	1	1	Х	1	Х
0	0	1	1	0	0	1	0	0	Х	0	Χ	Х	0	Х	1
0	0	1	0	0	0	0	1	0	Х	0	Χ	Х	1	1	Х
0	0	0	1	0	0	0	0	0	Х	0	Х	0	Х	Х	1
0	0	0	0	1	1	1	1	1	X	1	Х	1	Х	1	Х

(b)

 $J_0 = 1$

 \mathbf{K}_{0}

Q_1Q_0				
	00	01	11	10
Q_3Q_2				
00	Χ	1	1	Χ
01	Х	Х	1	Х
11	Х	1	1	Х
10	Х	1	1	Х

 $K_0 = 1$

 \mathbf{J}_1

Q1Q0 Q3Q2	00	01	11	10
00	1	0	Х	Х
01	1	0	Х	Х
11	1	0	Х	Х
10	1	0	Х	Х

 K_1

	$Q_1 Q_0$				
Q_3Q_2		00	01	11	10
	00	Х	Х	0	1
	01	Х	Х	0	1
	11	Х	Х	0	1
	10	Х	Х	0	1

$$J_1 = \overline{Q_0}$$

$$J_2$$

	Q_1Q_0							
Q ₃ Q ₂		00	01	11	10			
	00	1	0	0	0			
	01	Х	Х	Х	Х			
	11	Х	Х	Х	Х			
	10	1	0	0	0			

 $J_2 = \overline{Q_1}.\overline{Q_0}$

Q_1Q_0				
	00	01	11	10
	00	01	11	10
Q_3Q_2				
00	X	Х	Х	Х
01	1	0	0	0
11	1	0	0	0
10	Х	Х	Х	Х

 $K_2 = \overline{Q_1}. \overline{Q_0}$

Q_1Q_0				
Q ₃ Q ₂	00	01	11	10
00	1	0	0	0
01	0	0	0	0
11	Χ	Х	Х	Х
10	Х	Х	Х	Х

$$K_3$$

00	01	11	10
Х	Х	Х	Х
Χ	Х	Х	Х
0	0	0	0
1	0	0	0
	00 X X 0 1	00 01 X X X X 0 0 1 0	00 01 11 X X X X X X 0 0 0 1 0 0

$$J_3 = \overline{Q_2}. \overline{Q_1}. \overline{Q_0}$$

 $K_3 = \overline{Q_2}. \overline{Q_1}. \overline{Q_0}$

(c)

SECTION C

10 (short)

$$Q_{BL} + Q_{BR} = Q$$

- $Q_{A} = -Q_{BL}; Q_{C} = -Q_{BR}$ (a) $D_{A} * A = Q_{A} = \alpha_{1} * A$ $\varepsilon_{r} * E_{AB} = \alpha_{1}; \varepsilon_{r} * E_{BC} = \alpha_{2}$ $V_{AB} = E_{AB} * d_{1}; V_{BC} = E_{BC} * d_{2};$ $E_{AB} * d_{1} = E_{BC} * d_{2};$ $\frac{\alpha_{1}}{\alpha_{2}} = \frac{d_{2}}{d_{1}} = 2$ $Q_{A} = Q_{BL} = -2.0 \times 10^{-7} C$ $Q_{C} = Q_{BR} = -1.0 \times 10^{-7} C$
- (b) $V_{AB} = V_{BC} = E_{AB} * d_1 = (\alpha_1 * d_1) / \epsilon_r = 2.3 \times 10^3 \text{ V}$

The location that B=0 must be within the same plane with the three wires. Assure the location that B=0 is x away from the central wire, and so the total B can be given by:

$$B_{total} = B_1 + B_2 + B_3$$

 $B_{total} = \frac{\mu_0 I}{2\pi x} + \frac{\mu_0 I}{2\pi (d+x)} - \frac{\mu_0 I}{2\pi (d-x)}$ Let B_{total} = 0, $x = \pm \frac{1}{\sqrt{3}}d = \pm 0.5773$ d;

x = 0 would also be a solution.

12 (long)

(a) Electric filed:

At R=1.0 cm, inside the conducting sphere, so E=0; At R=3.0 cm,

$$E = \frac{Q}{4\pi\varepsilon_0 R^2} = 3 \times 10^5 V/m$$

At R=6.0 cm, outside the outer surface that got connected to earth, So E=0.

(b) Capacitor of the concentric spheres:

$$Q = CV;$$

$$C = \frac{Q}{V}$$

$$V = \int \frac{Q}{4\pi\varepsilon_0 R^2} dr = \frac{Q}{4\pi\varepsilon_0} (\frac{1}{R_1} - \frac{1}{R_2})$$

$$C = \frac{4\pi\varepsilon_0}{\frac{1}{R_1} - \frac{1}{R_2}} = 4.49 \times 10^{-12} F$$

(c) Total electrostatic energy:

$$W = \frac{1}{2}CV^2 = \frac{1}{2}QV = 1.01 \times 10^{-4} \text{ J}$$