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Section A, Q1- Q3
Ql. a). Pihy + Py (hy =hy) = pyhy
W Pair << P1 &Py
V| P (hy = ) [<< pihy & pyhy

h
pih=prh, = P1=/02h—2 [4]
1
b) (Q). p=1100+500y kgm™ ;  dp=pgdh
y
p(y):j(1100+500y)gdy ; =(1100y+250y2)g pa [3]
0

(ii) F:jp-dA; F/W:jp-dy

2 2
Ezj(1100y+250y2)gdy = [wyz +@y3} :
W 2 37, 3]

=(550-3+?-7)g ~ 21909 N = 21.91kN

d V2 1 dr

Q@) C=p—=p0n) 5 1 dp=pUin) S
dr r r r

n n dr 1 "

.[b dp = ,OVOZ’”O2 'J;O r_3 = /0V027”02 (_5)

1
7"2

o

2
Vorg-| 11 Vo |( 1.2-20.0°
po—p1=u{—2——2}p—° D === (22 -1)=7200pa  [6]

2 n 0 2 n 2

(b) Bernoulli’s Equation applicable if the Bernoulli constants across streamlines at
different 7’s remain a constant, i.e. need to show that

d(p+0.5pV?*) _ 0

for all »’s.
dr
2 2 -1 2
NOW, .. d_p — pV_’ and M — de_V — pVVOrO d(}" ) J— pV
dr r dr dr dr 7

2 2 2
dp+05pV7) _ V" V" o yed.
dr r r

Therefore the Bernoulli constants across streamlines do not change, and Bernoulli’s
Equation is applicable to the whole flow field across streamlines. [4]



Q3. at“1”, V(r)=V, [1 - (%)} .

(a). By continuity, my =my ; mg = ApV, = R? yol 4

2 2 2
S R _ R r _ 2 R _ 7R ch
my = J.o 2rrpV (r)dr = J.o 2rrpV, {1 — (Ej ]dr = mpV.(R —7) ==
. . 2 aR> ol 4
mg =nmy o 7R pVO =—r < = VC = 2VO [6]
(b) Along the centre line of the pipe by symmetry there exist a streamline. Between

“0” up to “1”, the central streamline is not affected by the viscous effect, (but will have
friction loss beyond “1”). Therefore Bernoulli’s Equation is valid from “0” to “1”” along
the centreline, but not any other streamline between these two planes.

Po+0.50V5 = p1 +0.5pV2 = pi+2pV5s po—py =2pV5 _%PVOZ = %/OVO2 on the

centre line. Also, as the streamlines inside the pipe are parallel, Z—p =0, the static
r

pressure is uniform on cross-sections perpendicular to the centre line, this leads to the
static pressure at the centre line being constant across the whole cross-section area.  [8]

(c) At “0”, Momentum Flux M, =mV, = zR*pV,} ; as flow is uniform at “0”.
At “1”, Momentum Flux
2
_ (R 2, _ (R 2 r S T S
M, = jo 27 pV (r) dr = jo 2V, {1—&) }dr = ARV = ARV (V=2
[10]
(d) Steady Flow Momentum Equation (SFME) on a C.V. between “0” and “1”:
F'_is the total external force on the fluid:
F.=A-(p,—p,)+ ZMomentun Fluxes 0 """"""""""""""""""""""" 1

=7R*(p, - p,) +§7ZR2pV02 — R’ pV} = —%ﬂRszoz +%7ZR2pV02 = —%ﬂRszoz

F_ is the drag force on the flow, pointing against the flow direction. The force acting on
the pipe by the flow is the reaction of this force, pointing in the direction of the flow:

., 1s created by the surface viscous friction drag on the

7
Fﬂnw =-F, :gﬂRszo2 . Fﬂo

pipe wall due to the movement of the flow relative to the pipe surface. [6]
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Question 4

(a)

Ideal gas law as applied to a perfect gas, where Ry, is found within the databook.
Rpe =2080]/(kg K).

Vi 5.10°Pa0.5m?
T, = - =11602.6 K
Y7 Ryem; — 2080]/(kgK)0.075kg

(b)
The weighted piston dictates that p, = p;.
Work is the LZ PdV of the system, where P and m are constant, thus p ff dV =mR ff aT

Wis = mRy(T, - Ty) = 0.075kg 2,080]/(kg K)(273.15K — 16026 K) = -207,389 ]

Alternatively, the ideal gas law can be applied again to find V, and then used to find work.

_ miRy T, _ 0.075kg2,080)/(kgK)273K _ 0.085 m’
p1 5-105Pa '

Wi, = p1(V,-V;) = 5-10°Pa(0.085m3 - 0.5m3) = —207,389]

Wi, = (work done on the system)

Upp = my ¢y pe(To - Ty) = 0.075kg3110]/(kg K) (273.15K — 1602.56 K) = —310,086]

Vs

Ui, =|-310 kJ | (internal energy is reduced)
Q12 = mycphe(Tr —T1) = 0.075kg 5190]/(kg K)(273.15K - 1602.56K) = -517,474]

or le = U12+W12 =-207 1(] - 310 k] =-517 k]

Q12 =|-517 KkJ | (heat transferred out of the system)



Question 5

(a)

Given that dw, = —vdp, the work can be found through integration w, = —Jf vdp
Since pv" = Const, then v = Const!/" p=1/1,

Substituting into the work relation

TP

— 1—1/n]2 _ _[ n

1/n,—1/n ]2
1 n-1

wy = —flz Const/"p=1/ndp = —[Constl/n p' Const'"p 1

=v

_ n 2 . n
Wy = _n—l[pv]l = —n_l(szz - p1v1)

To transform the relation from pressure and volume to temperature and the ideal gas constant, the
ideal gas relation is employed, pv = RT.

Substituting the ideal gas relation into the work equation results in
nR
n-1

n
w, :—m(RTz—RTl)Of Wy =— (T, - Th)

(b)

The steady flow energy equation with no kinetic or potential energy changes

q-wy = (hy = V372 + gz5) — (hy — V72 + gz1) = dhy_p = ¢y(T, - Ty)

The question requires that ¢, be transformed to an expression in terms y and R.

Solve R = ¢, —¢, and y = ¢,/c, for c,.

R
¢y =cp/y therefore R = ¢, —¢,/y. Thus, R = ¢,(1-1/y)or ¢, = 1 Rl/y = (yy 0
Plug this result into the SFEE along with the result from part a.
nR n
q=witp(hL-T) =——(-T)+ " — (L -T) = (%— n—l)R(T2 -T)

yn=1)=n(y-1) yn—y-—ny+n
:( (y-1)(n-1) )R(Tz—Tl)Z( =Dn-1) )R(Tz—Tl)

_ n-y
q= (m)R(Tz -T)




Question 6

(a)

The problem states that the compressor is adiabatic and reversible, thus isentropic. From the data-
book T/p7=1/¥ = const. Therefore,

(y=1/y (0.4)/1.4

10

T, =T (Z_z) = 300K (—)
1

1

T, = 579.2K

For an adiabatic compressor there is no heat transfer and thus neglecting kinetic and potential energy
changes, the change in enthalpy is directly related to the change in work, d¢J -dW = dH. Given that

the gas is perfect dH = rr'llcpd T, where Cp is constant for a perfect gas. Therefore, WC = =1y ¢y 134 dT,
or

We = —tityc, (T3 — Ty) = -10 kg/s 1.005 k] /kg/K (579.2 K - 300 K) = [-2.806 MW

Therefore, the power input (negative work) into the compressor is 2.806 MW.

(b)

T4 can be found by the isentropic relation,
T4 = T3 (&

(y-1/y 1.2\(0.:4)/1.4
; ) ) [T, = 763.9K
3

= 1400K (—
10
To calculate the mass flow rate we must incorporate the given W,,,;.
Wr = Wy - We = 3 MW + 2.81 MW = 5.81 MW
Wr 5,810 kW
¢p(T3—Ty)  1.005Kk]/kg/K (1400 K - 763.9 K

Wr = 1ity_4¢p(T3=Ty) = tity_4 =

; —>’ fity_4 = 9.082 kg/s\

To calculate the efficiency of the system
W Wt B 3,000 kW
= Qin  Ma_acy(T3—T,) — 9.082 kg/s 1.005 kJ/kg/K (1400 K- 579.2 K

> |11 = 0.404 or 40.4%

(c)

Conservation of energy with no heat transfer or external work

& — Vi = —rirshs — ritghy + rirghe

Using conservation of mass, #i1s = 15 + 114 and perfect gas h=¢,T.
Therefore, 0 = (15 — 1714)C, Ts — 1114 C, Ty + 11 C, T, or

T6 = (1 - T’I;l4/1’l;l6)T5 + ﬂ;l4/1’l;l6T4

From @ — ® throttling valve where dh, 5 =0 .. Ts = T, = 579.2K
Ts =(1-9.082/10) 579.2 K + (9.082/10) 763.9 K = | Ts = 746.95 K‘

From the 2nd Law of Thermodynamics applied to a control volume (in databook)



ds . . ) .
T + 2 MoutSout — 2L MinSin = f/d/Té‘i' Sirrev

Sirrev = MgSe — Ml5S5 — 114Sy = 115(S — S5) + 114(S6 — 54)

For a perfect gas the rate of entropy generation is given by the expression $;_, = (¢, In(To/T1) —
Rlin(p,/p1)) and therefore,

Sirrev = (1t = 1itg)(cp In(Te/Ts) = Rln(pe/ps)) + ritg(cp In(Te/Ty) = RIn(pe/p4))

Sirrew = (10 - 9.082) kg/s (1005 J/(kg K) In(747/579)- 287 J/(kg K) In(1/1.2))
+9.082 kg/s (1005 J/(kg K) In(747/764)- 287 J/ (kg K) In(1/1.2))

Sirrer = 553.04 /(K s)

(d)

Table not needed

S T
State  [J/(kg K)] [K]

T 1 0 300

2 0 579
A 3 887 1400 @
4 887 764
5 609 579
6 917 747

Stream A

>
S

Temperature versus entropy diagram of cycle.
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Q7 Ice skater

a) Angular momentum is conserved during the process.

Hipitial = 2m(QR)R

R R
Hﬁna] = 2m(w5)5

Therefore,
w =40

b) One way to work out the average power exerted, is to consider the change in energy.
Rotational kinetic energy is not part of the TA syllabus, but since we have only two point
masses, we can use the kinetic energy formula for linear motion. The speed of the outer
masses is v1 = RS) before and vo = wR/2 after the pulling in of the arms. Therefore the
change in kinetic energy is

1 1
AE = 52mv§ - §2mvg
1 (4QR\*> _1
= 2= — ] —2= 0)?
5™ ( 5 > 2m(R )
= 3mQ’R?
So the average power exerted is
3mQO?R?
P=——
T

Another possible solution is to integrate the force that is needed to pull in the arms. When
the length of the arms is r, the force exerted is

F(r) = 2mw(r)?r
where, generalising the answer to part a), the angular velocity as a function of r is

R2
w(r) = QT—Q

Therefore

1 [R/2
P:?/R F(r)dr

_2mQ2RY (R ar omQ2RA[ 11777
T /R BT [—273}
mQ?RY [ 4 1y 3mO? R?
T <R2 - R2> ST

R

Putting realistic numbers in, e.g. T =1s, @ = 12rad s~ !, m = 4 kg, R = 0.5 m, we get
432 W of power!



Q8 Mechanism

a)

The instantaneous centre of motion, I, is directly above C at a distance of 2L, on the
extension of the line AB. The velocity of B is along BC, so due to symmetry, the angular
velocity around the instantaneous center is also w. Therefore the velocity of C is

to the left.

b) Suppose a torque T acts at A, so the power supplied is Tw. This has to counteract all
frictional torques and frictional forces. The joint B is turning with angular velocity 2w (the
rate of change of the angle ABC), so the power balance is

Tw=Q(w+ 2w+ w) + F2wL
SO
] T =4Q + 2FL \
Q9 chain

Let us define the linear density of the chain as p = M/L. Denoting the height of the chain above
the table by z, the mass of the chain in the air is pz.

a)

The chain is being pulled at a constant speed v, so we have
z =t

The gravitational pull on the chain is pzg = pvgt, so the total force is F' — pvgt that has
to equal the rate of change of momentum,

d
F — pogt = p (mv)
where m = pz = povt is the mass in the air. While the chain is being lifted, the mass in the
air is changing,

d
- (pvtv) = pv?

After the chain is fully lifted, its momentum does not chain any more, so the force required
is just that to balance the weight. Therefore

Mg (=pLg) Ljv<'t

_{pgvt+pv2 0< t< Ljv

For the case of constant pulling force F', again the total force must equal the rate of change
of momentum. Momentum is still mass x velocity, but the velocity is not a constant any
more, so mv = pz X 2, and therefore

d
F—pzg = - (p22)
F = pgz+ pzi+ p#?



Figure 1: Force on the chain in part a), the case of constant velocity.

The proposed solution is the quadratic polynomial z = a + bt + ct?. Using the initial
condition z = 0 at ¢ = 0 yields @ = 0. Substituting solution into the differential equation,
we have

(a+ bt + ct®)2c+ (b+2ct)* + gla+ bt + ct?) = F/p.

We equate coefficients of powers of ¢,

2ac+b* +ga = F/p
2bc+ 4bc+ gb = 0
22 +4c2 +gc = 0

Notice that the second and third equations are redundant. Together with the first equation,
they give b and c,

c = —g/6
b = VF/p

So the complete solution is

z=/F/pt—gt*/6
The chain leaves the table when z = L, so the corresponding time ¢ satisfies
—%ﬁ +VF/pt—L=0

Using the the quadratic formula gives

. VF/p—VF/p—2Lg/3

q/3

A real solution exists when | F' > 2Lpg/3|. This is less than the force required to balance

the weight of the chain, Lpg. Using this minimum force, the chain would momentarily
leave the table and then fall back down again.



[9)

o

a) Radoal acceloxdbiow = D d‘-{l’&/‘f WENe, qna;?q ,

—

v *"'t'_ﬂ-l = B

Selwwng albove ' o Y=/ ~N(a) = O e ﬁe;t
(I 5 L 13 77

vty = 4 cosh bt

: wWha v o A - _[_
A
b= 0.
(b)) ANV i)Y =L 4=+ cauy
| / -/ q— O
. L = L COSL\_ILEJY
) 2
47‘%, = l c,oskj‘\z./
(L

A




.llfn-_- L 116 = 100 = I5-9H2
HT)‘JI 254t
(b} B = -A:’.D\ml‘l{: -+ ﬂsci_m; ;_;_‘x:f"
@'{';ﬂ; gg =0-1 yad. ;'é =0 _vad S"‘
=b A =ni £ =0]
S B = Ml (mwot— + Sun IQO*ED i
(c) NS = O By
0,
IR N = (|
0-00 1
N = HO oy ddpa
T = 110 V. 6.9c<
159
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Pi%ﬁﬁr\lxﬁ Vx\ Ky = X'\wsvo‘* , ’X,,:X,CD&@)(" > % = k/czmz_gf-:s"(" u»-e_aL

fc\
l@k A(\ — WWw ‘X - 4kX, = (K*AKB;/ =8
Esgﬁ-m;') = mw”j! X, — 44X, = (K +Ak );{ (29
(1D + (=)
(lc-mua \(Yﬁ)‘ﬂ AVJ)C—-X\ 2.Y Nng")
f\l>_ \2—) L

(Ak = wwq'\(x\-yl\-*—i\v\fx.}xl\ = -2nky  —&)
g AR 7 < 7
Su.hsin'\,\J:ﬂ (2) w (&)

“
CCHL -'W\wl) QK\"‘X;_B — Ak_ Zky 'f'.’)K(‘_)(\’_x‘L) :-MK\!

= pa w2
L «J
\
(A mw ) (- (X=X ) = Ak (’sc —X \ 2ka01-r(kﬂ~u3))
AN F AN AN s ~ -
CZAKL

(Al —wu?) (w-mu?) = Ak 1
L 4 <J

D=0 = swhwm © Qmwﬁ(g &x'\’xz.p_'o
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