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Section A, Q1- Q3 
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      (b) Bernoulli’s Equation applicable if the Bernoulli constants across streamlines at 

different  r’s remain a constant, i.e.  need to show that 
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Therefore the Bernoulli constants across streamlines do not change, and Bernoulli’s 

Equation is applicable to the whole flow field across streamlines.     [4] 
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(a).   By continuity, 0
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(b) Along the centre line of the pipe by symmetry there exist a streamline.  Between 

“0” up to “1”, the central streamline is not affected by the viscous effect, (but will have 

friction loss beyond “1”).  Therefore Bernoulli’s Equation is valid from “0” to “1” along 

the centreline, but not any other streamline between these two planes. 
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centre line.   Also, as the streamlines inside the pipe are parallel, 0≡
∂
∂
r

p
, the static 

pressure is uniform on cross-sections perpendicular to the centre line, this leads to the 

static pressure at the centre line being constant across the whole cross-section area.      [8] 

 

(c)  At “0”, Momentum Flux 2
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(d) Steady Flow Momentum Equation (SFME)  on a C.V. between “0” and “1”: 

xF is the total external force on the fluid: 
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xF  is the drag force on the flow,  pointing against the flow direction.  The force acting on 

the pipe by the flow is the reaction of this force, pointing in the direction of the flow:  
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VRFF xflow ρπ=−= .   flowF   is created by the surface viscous friction drag on the 

pipe wall due to the movement of the flow relative to the pipe surface.         [6] 
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Question 4

(a)

Ideal gas law as applied to a perfect gas, where RHe is found within the databook.
RHe = 2080 J/(kg K).

T1 =
p1V1

RHem1
=

5 · 105Pa0.5m3

2080J/(kgK)0.075kg
= 1602.6 K

(b)

The weighted piston dictates that p2 = p1.
Work is the

∫ 2
1 P dV of the system, where P and m are constant, thus p

∫ 2
1 dV =mR

∫ 2
1 dT

W12 = mRHe(T2 − T1) = 0.075kg2,080J/(kgK)(273.15K− 16026K) = -207,389 J

Alternatively, the ideal gas law can be applied again to find V2 and then used to find work.

V2 =
m1RHeT2

p1
=

0.075kg2,080J/(kgK)273K
5 · 105Pa

= 0.085 m3

W12 = p1(V2 −V1) = 5 · 105Pa(0.085m3 − 0.5m3) = −207,389J

W12 = -207 kJ (work done on the system)

U12 = m1 cv,He(T2 − T1) = 0.075kg3110J/(kgK)(273.15K − 1602.56K) = −310,086J

U12 = -310 kJ (internal energy is reduced)

Q12 = m1 cp,He(T2 − T1) = 0.075kg5190J/(kgK)(273.15K − 1602.56K) = −517,474J

or Q12 =U12 +W12 = -207 kJ - 310 kJ = - 517 kJ

Q12 = -517 kJ (heat transferred out of the system)

1



Question 5

(a)

Given that dwx = −v dp, the work can be found through integration wx = −
∫ 2
1 v dp

Since pvn = Const, then v = Const1/n p−1/n.
Substituting into the work relation

wx = −
∫ 2
1 Const1/np−1/ndp = −

[
Const1/n

1
1− 1/n

p1−1/n
]2
1
= −

[ n
n− 1

p1Const1/np−1/n︸           ︷︷           ︸
=v

]2
1

wx = − n
n− 1

[
pv

]2
1
= − n

n− 1
(p2v2 − p1v1)

To transform the relation from pressure and volume to temperature and the ideal gas constant, the
ideal gas relation is employed, pv = RT .

Substituting the ideal gas relation into the work equation results in

wx = − n
n− 1

(RT2 − RT1) or wx = − nR
n− 1

(T2 − T1)

(b)

The steady flow energy equation with no kinetic or potential energy changes
q −wx = (h2 −���V 2

2 /2+��gz2)− (h1 −���V 2
1 /2+��gz1) = dh1−2 = cp(T2 − T1)

The question requires that cp be transformed to an expression in terms γ and R.

Solve R = cp − cv and γ = cp/cv for cp.

cv = cp/γ therefore R = cp − cp/γ . Thus, R = cp(1− 1/γ) or cp =
R

1− 1/γ
=

γR

(γ − 1)
.

Plug this result into the SFEE along with the result from part a.

q = wx + cp(T2 − T1) = −
nR
n− 1

(T2 − T1) +
γR

γ − 1
(T2 − T1) =

( γ

γ − 1
− n
n− 1

)
R(T2 − T1)

q =
(γ(n− 1)−n(γ − 1)

(γ − 1)(n− 1)
)
R(T2 − T1) =

(γn−γ −nγ +n

(γ − 1)(n− 1)
)
R(T2 − T1)

q =
( n−γ
(γ − 1)(n− 1)

)
R(T2 − T1)

2



Question 6

(a)

The problem states that the compressor is adiabatic and reversible, thus isentropic. From the data-
book T /p(γ−1)/γ = const. Therefore,

T2 = T1

(
p2
p1

)(γ−1)/γ
= 300K

(10
1

)(0.4)/1.4
T2 = 579.2 K

For an adiabatic compressor there is no heat transfer and thus neglecting kinetic and potential energy
changes, the change in enthalpy is directly related to the change in work,��dQ̇−dẆ = dH . Given that

the gas is perfect dH = ṁ1cpdT , where cp is constant for a perfect gas. Therefore, ẆC = −ṁ1cp
∫ 4
3 dT ,

or

ẆC = −ṁ1cp(T3 − T4) = -10 kg/s 1.005 kJ/kg/K (579.2 K - 300 K) = -2.806 MW

Therefore, the power input (negative work) into the compressor is 2.806 MW.

(b)

T4 can be found by the isentropic relation,

T4 = T3

(
p4
p3

)(γ−1)/γ
= 1400K

(1.2
10

)(0.4)/1.4
→ T4 = 763.9 K

To calculate the mass flow rate we must incorporate the given Ẇnet.
ẆT = Ẇnet − ẆC = 3 MW + 2.81 MW = 5.81 MW

ẆT = ṁ2−4cp(T3−T4)→ ṁ2−4 =
ẆT

cp(T3 − T4)
=

5,810 kW
1.005 kJ/kg/K (1400 K - 763.9 K)

→ ṁ2−4 = 9.082 kg/s

To calculate the efficiency of the system

η =
Ẇnet

Q̇in
=

Ẇnet

ṁ2−4cp(T3 − T2)
=

3,000 kW
9.082 kg/s 1.005 kJ/kg/K (1400 K- 579.2 K)

→ η = 0.404 or 40.4%

(c)

Conservation of energy with no heat transfer or external work

��̇Q −��̇Wx = −ṁ5h5 − ṁ4h4 + ṁ6h6

Using conservation of mass, ṁ6 = ṁ5 + ṁ4 and perfect gas h = cpT .
Therefore, 0 = −(ṁ6 − ṁ4)CpT5 − ṁ4CpT4 + ṁ6CpT6, or

T6 = (1− ṁ4/ṁ6)T5 + ṁ4/ṁ6T4

From 2O→ 5O throttling valve where dh2−5 = 0 ∴ T5 = T2 = 579.2K
T6 =(1-9.082/10) 579.2 K + (9.082/10) 763.9 K = T6 =746.95 K

From the 2nd Law of Thermodynamics applied to a control volume (in databook)
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�
�
��dSCV

dt
+
∑
ṁoutsout −

∑
ṁinsin =

∫ ��dQ̇
T

+ Ṡirrev

Ṡirrev = ṁ6s6 − ṁ5s5 − ṁ4s4 = ṁ5(s6 − s5) + ṁ4(s6 − s4)

For a perfect gas the rate of entropy generation is given by the expression ṡ1−2 = (cp ln(T2/T1) −
Rln(p2/p1)) and therefore,

Ṡirrev = (ṁ6 − ṁ4)(cp ln(T6/T5)− Rln(p6/p5)) + ṁ4(cp ln(T6/T4)− Rln(p6/p4))

Ṡirrev = (10 - 9.082) kg/s (1005 J/(kg K) ln(747/579)- 287 J/(kg K) ln(1/1.2))
+ 9.082 kg/s (1005 J/(kg K) ln(747/764)- 287 J/(kg K) ln(1/1.2))

Ṡirrev = 553.04 J/(K s)

(d)

Temperature versus entropy diagram of cycle.
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Gábor Csányi & Ashwin Seshia

Q7 Ice skater

a) Angular momentum is conserved during the process.

Hinitial = 2m(⌦R)R

Hfinal = 2m(!
R

2
)
R

2

Therefore,

! = 4⌦

b) One way to work out the average power exerted, is to consider the change in energy.
Rotational kinetic energy is not part of the IA syllabus, but since we have only two point
masses, we can use the kinetic energy formula for linear motion. The speed of the outer
masses is v1 = R⌦ before and v2 = !R/2 after the pulling in of the arms. Therefore the
change in kinetic energy is

�E =
1

2
2mv22 �

1

2
2mv22

= 2
1

2
m

✓
4⌦R

2

◆2

� 2
1

2
m(R⌦)2

= 3m⌦2R2

So the average power exerted is

P =
3m⌦2R2

T

Another possible solution is to integrate the force that is needed to pull in the arms. When
the length of the arms is r, the force exerted is

F (r) = 2m!(r)2r

where, generalising the answer to part a), the angular velocity as a function of r is

!(r) = ⌦
R2

r2

Therefore

P =
1

T

Z R/2

R
F (r) dr

=
2m⌦2R4

T

Z R/2

R

dr

r3
=

2m⌦2R4

T


�1

2

1

r2

�R/2

R

=
m⌦2R4

T

✓
4

R2
� 1

R2

◆
=

3m⌦2R2

T

Putting realistic numbers in, e.g. T = 1 s, ⌦ = 12 rad s�1, m = 4 kg, R = 0.5 m, we get
432 W of power!
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Q8 Mechanism

a) The instantaneous centre of motion, I, is directly above C at a distance of 2L, on the
extension of the line AB. The velocity of B is along BC, so due to symmetry, the angular
velocity around the instantaneous center is also !. Therefore the velocity of C is

vc = 2!L

to the left.

b) Suppose a torque T acts at A, so the power supplied is T!. This has to counteract all
frictional torques and frictional forces. The joint B is turning with angular velocity 2! (the
rate of change of the angle ABC), so the power balance is

T! = Q(! + 2! + !) + F2!L

so
T = 4Q+ 2FL

Q9 chain

Let us define the linear density of the chain as ⇢ = M/L. Denoting the height of the chain above
the table by z, the mass of the chain in the air is ⇢z.

a) The chain is being pulled at a constant speed v, so we have

z = vt

The gravitational pull on the chain is ⇢zg = ⇢vgt, so the total force is F � ⇢vgt that has
to equal the rate of change of momentum,

F � ⇢vgt =
d

dt
(mv)

where m = ⇢z = ⇢vt is the mass in the air. While the chain is being lifted, the mass in the
air is changing,

d

dt
(⇢vtv) = ⇢v2

After the chain is fully lifted, its momentum does not chain any more, so the force required
is just that to balance the weight. Therefore

F =

(
⇢gvt+ ⇢v2 0 < t < L/v

Mg (= ⇢Lg) L/v < t

b) For the case of constant pulling force F , again the total force must equal the rate of change
of momentum. Momentum is still mass ⇥ velocity, but the velocity is not a constant any
more, so mv = ⇢z ⇥ ż, and therefore

F � ⇢zg =
d

dt
(⇢zż)

F = ⇢gz + ⇢zz̈ + ⇢ż2

2



F

t

Mg

ȡv2

ȡv2

L/v

Figure 1: Force on the chain in part a), the case of constant velocity.

The proposed solution is the quadratic polynomial z = a + bt + ct2. Using the initial
condition z = 0 at t = 0 yields a = 0. Substituting solution into the di↵erential equation,
we have

(a+ bt+ ct2)2c+ (b+ 2ct)2 + g(a+ bt+ ct2) = F/⇢.

We equate coe�cients of powers of t,

2ac+ b2 + ga = F/⇢

2bc+ 4bc+ gb = 0

2c2 + 4c2 + gc = 0

Notice that the second and third equations are redundant. Together with the first equation,
they give b and c,

c = �g/6

b =
p

F/⇢

So the complete solution is

z =
p
F/⇢ t� gt2/6

c) The chain leaves the table when z = L, so the corresponding time t satisfies

�g

6
t2 +

p
F/⇢ t� L = 0

Using the the quadratic formula gives

t =

p
F/⇢�

p
F/⇢� 2Lg/3

g/3

d) A real solution exists when F > 2L⇢g/3 . This is less than the force required to balance

the weight of the chain, L⇢g. Using this minimum force, the chain would momentarily
leave the table and then fall back down again.
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