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Q1 (a) (i) The solid and liquid phases have distinct free 

energy curves that intersect, defining the equilibrium 

temperature, Tm (the solid and liquid phases are in 

equilibrium). The stability domains of the liquid and solid 

phases are shown in the schematic below. For temperatures 

below Tm, the solid phase has the lowest free energy and is 

therefore the stable equilibrium phases. Conversely, at 

temperatures above Tm, the liquid phase is stable. 

 

 

(ii) The Gibbs free energy G is given by G = H −TS, where H and S are the change in 

enthalpy and entropy respectively.  

At Tm  (and for a fixed pressure), G must be zero. Assuming that H and S do not vary significantly 

with temperature (this is a reasonable assumption: although the absolute values of enthalpy and 

entropy are dependent upon temperature, the differences between the 2 phases will be weak functions 

of temperature): 

G(Tm) = H – Tm S = 0 ⟹ S = H/Tm   
G(T) = H – TS = H – TH/Tm  

∴ G(T) = H (
𝑇𝑚 − 𝑇 

𝑇𝑚 
)   

G(T) varies to the first order with T – Tm (undercooling / supercooling). 

 

Alternatively you could also use the following: 

At Tm, G = H − Tm S = 0, hence H = Tm S  

G(T) = Tm S – TS = S (Tm  – T ) 

 

(b) Interstitial solid solutions have smaller atoms that fit into the ‘holes’ between larger atoms (e.g.  C 

in Fe), while substitutional solid solutions have similar-sized atoms that replace each other in the 

crystal lattice (Zn in Cu).  
 
Interstitial solutes diffuse by motion of the small solute atom from one interstitial site to the next. i.e. 

the solute atoms move via the gaps between the solvent atoms. 
 
Substitutional solutes diffuse via motion of the solute atom from a substitutional site to an adjacent 

vacant site. Relevant to atoms of similar atomic size. Atomic motion only occurs if a vacancy is 

available. 

Both interstitial and substitutional diffusion can be thought of as requiring the diffusing atom to 

squeeze through a small gap. It requires the solute atom to move from one (low energy) lattice site to 

the next, via a position in which its energy is higher. Hence, to diffuse, the atom must overcome an 

energy barrier, equal to the increase in energy from the low to the high energy site. This energy barrier 

q is the activation energy for diffusion, Q = q NA (J/mol,  NA is the Avogadro’s number), as sketched 

above. 

 



      

 

Since interstitial atoms almost always have an adjacent empty interstitial site to move into, 

interstitial diffusion is faster than substitutional diffusion, which requires a vacancy to be available. 

 

(c) D = D0 exp (– Q/RT)     T1 = 330+273= 603 K     T2  = 730+273 = 1003 K 

𝐷(𝑇1)  =  8.2 × 10 −22 =  𝐷0 exp (−𝑄/𝑅𝑇1)   

𝐷(𝑇2)  =  3.6 × 10 −15 =  𝐷0 exp (−𝑄/𝑅𝑇2)   

If you divide the two equations and take natural logs, the resulting equation is 

ln (
𝐷(𝑇1)

𝐷(𝑇2)
)  = (−

𝑄

𝑅
) (

1

𝑇1
−

1

𝑇2
) 

Solving for 𝑄 

𝑄 = −𝑅 ln (
𝐷(𝑇1)

𝐷(𝑇2)
) (

1

(
1
𝑇1

−
1
𝑇2

)
) =  −8.314 ln (

8.2 × 10 −22

3.6 × 10 −15
) (

1

(
1

603 −
1

1003)
) 

∴ 𝑄 = 192271 J mol−1 ≈ 192 kJ mol−1 

(d) In a single crystal sample diffusion would be expected to occur principally through the bulk 

substitutional diffusion mechanism described above. In a polycrystalline sample, a higher diffusion 

rate would be expected because the grain boundaries provide faster diffusion paths. In the single 

crystal there may be dislocations, which would also give short circuit diffusion paths, but this is also 

true for the polycrystalline sample. 

Table 1 shows that the diffusion coefficient is significantly higher in the polycrystalline sample at the 

lower temperature (330 °C) but at the higher temperature (730 °C) they are very similar. This suggests 

that grain boundary diffusion dominates at the lower temperature and, at the higher temperature, the 

same bulk diffusion mechanisms are dominant in both samples. It is possible that there may be 

significant grain growth at higher temperatures, leading to a reduction in grain boundary area and 

hence similar D values to the single crystal sample. 

 

 

 

  



Q2   (a) Oxidation occurs when the Gibbs free energy of reaction G0 , the free energy difference 

between the oxide (product) and metal and oxygen (reactants) at a particular temperature and 

pressure, is less than zero (G0 < 0). (If G0 > 0, the metal surface is stable (no oxidation)). 

At short time-scales, the oxide layer is very thin. The rate limiting step in the formation of an oxide 

layer is dependent on the diffusion of reactants (oxygen ions, metal ions) through the oxide thickness, 

and their relative diffusivities. This leads to a constant growth rate. At long time scales, oxides often 

follow a parabolic growth rate because the rate limiting process becomes the diffusion across the 

oxide layer when this layer is thick enough.  

Linear kinetics occur when the oxide evaporates (linear loss) or cracks, peels off (linear gain) 

allowing oxygen to reach freely the metallic surface for further oxidation. 

 

(b)    (i)  Under the curve there are approximately 85 squares, with height of 0.2 microns and width 

of 5 mm. Hence the oxide volume will be:  

2𝜋𝑟 × (85 × 5 × 10−3 × 0.2 × 10−6) ≈ 2.67 × 10−9 m3 

where r is the tube radius (5 ×10-3 m) 

From Figure 1, at 400 °C, volume at this end of the bar will be  

 ≈ 𝜋𝑟2 × 0.2 × 10−6 m = 1.57 × 10−11 m3 

At 500 °C, volume at the other end of the bar  ≈ 𝜋𝑟2 × 1.9 × 10−6 m = 1.50 × 10−10 m3 

Hence oxide mass ≈ 6 ×106 g/m3 × (2.67+ 0.0157 + 0.150) × 10-9 m3 ≈ 17 mg 

(ii)  A total oxide mass of 85 mg is 5× the mass of oxide found in part (b) for a period of 1 hour.  

Assuming the oxide follows a parabolic rate equation and that the rate of oxidation doesn’t change 

with time, then it would take 25× longer time compared to part (b), hence 25 hours.  

(iii)   If the oxide thickness follows a parabolic law, then:   y (t)2 = C1 t + C2. At time t = 0, y = 0, 

hence C2 = 0. 

Arrhenius law states that rate of process ∝  – exp (Q/R), where 𝑄 is the activation energy and R is the 

universal gas constant (8.314 J mol-1 K-1).  

We have a linear temperature profile along the bar, so from Figure 1 we know the oxide thickness as 

a function of temperature.  

Temperature T 

(°C) 

T (K) y (m /1 hr) Rate: y2/3600 (m2 s-1) 

400 673 0.2 (0.2×10-6)2/3600 

420 693 0.4 (0.4×10-6)2/3600 

440 713 0.6 (0.6×10-6)2/3600 

460 733 0.9 (0.9×10-6)2/3600 

480 753 1.3 (1.3×10-6)2/3600 

500 773 1.9 (1.9×10-6)2/3600 

 

To find the activation energy 𝑄, the data should be plotted as ln (rate) vs 1/T  (T in Kelvin). 

 

 



 

 

 

 

 

 

 

 

 

 

 

The slope is Q/R  ≈ 24400 J mol−1 hence 𝑄 ≈ 203 kJ mol-1. 

 

 

 

  

y = – 24400 x   –  2.91 



Q3 

 

 

 

 

 

 

 

 

(a) (i)  A thickness reduction to 0.8 mm would result into a nominal plastic strain of: 

       𝜀𝑛 =
𝑡𝑓

𝑡0
− 1 =

0.8

1.34
− 1 = −0.40, a reduction of 40%. 

From Fig. 2, the ductility of brass after 40% reduction is ~8%, which does not satisfy the property 

specification. 

(ii)  From Fig. 2 above, the possible range of plastic strain which can be applied to the annealed 

alloy in the second pass, in order to satisfy the requirements on yield strength and ductility are:  

Minimum strain to meet strength target (ductility fine):  ~17% 

Maximum strain to meet ductility target (strength fine):  ~30%.  

The corresponding intermediate sheet thicknesses between the two passes will be: 

For a 2nd pass reduction of 17%:  𝜀𝑛 = −0.17 =
0.8

𝑡𝑖𝑛𝑡
− 1, hence  𝑡𝑖𝑛𝑡 = 0.96 mm 

Hence magnitude of first pass reduction:  𝜀𝑛 =
0.96

1.34
− 1 =  −0.28, or 28% reduction 

For a 2nd pass strain of magnitude 30%:  𝜀𝑛 = −0.30 =
0.8

𝑡𝑖𝑛𝑡
− 1, hence  𝑡𝑖𝑛𝑡 = 1.14 mm 

Hence magnitude of first pass reduction:  𝜀𝑛 =
1.14

1.34
− 1 =  −0.15, or 15% reduction 

(iii)  For equal magnitudes of % reduction in each pass, the intermediate sheet thickness must 

satisfy: 

𝜀𝑛 =
𝑡𝑖𝑛𝑡

1.34
− 1 =

0.8

𝑡𝑖𝑛𝑡
− 1, i.e. 𝑡𝑖𝑛𝑡

2 = 1.34 × 0.8 

Hence the intermediate thickness 𝑡𝑖𝑛𝑡 =  1.04 mm  

The % reduction in each pass is then 𝜀𝑛 =
1.04

1.34
− 1 ≈ −0.22, or 22% reduction  

The yield strength and ductility of the sheet after the second pass to this % reduction are ~360MPa 

and ~20%, respectively. 

 

 

 



(b) (i)  For a nominal strain of  –22%, the true strain is:  𝜀𝑡 = ln(1 − 0.22) = −0.25 

The true stress-strain response is the same in tension or compression, hence the flow stress at this 

magnitude of true strain is:  𝜎𝑡 = 180 + 380 (0.25)0.3 = 431 MPa. 

(ii) Work done during the first rolling process: 

𝑊 = ∫ 180 + 380 ∙ 𝜀0.30.25

0
𝑑𝜀 = 180 ∙ 0.25 +

380

(0.3+1)
∙ 0.25(0.3+1) = 45.7 MJ/m3 

(iii) 5% of the plastic work done is:  0.05  44.7 = 2.25 MJ/m3 

The remaining 95% is dissipated through heat. 

The energy stored per unit length of dislocation is:  𝐸⊥ = 𝐺𝑏2 2⁄   

i.e. 𝐸⊥ = (33 × 109) × (0.275 × 10−9)2 2⁄ = 1.2510-9 J/m 

Hence the estimated dislocation density 𝜌𝑑 in the material after applying 𝜀𝑡 = 25% is: 

𝜌𝑑 =
2.25 × 106

1.25 × 10−9 = 1.8 × 1015 m/m3 

 

 

 

  



Q4  (a)   Hardenability is defined as the ability of a steel to form martensite on quenching from the 

austenite field, as a pre-requisite for tempering.  In practical terms, it limits the size of component 

that can form 100% martensite right through the thickness, to the point of slowest cooling.  It may 

be quantified for a given steel by the diameter of solid cylinder that reaches a minimum fraction of 

martensite at its centre (or by the Jominy end-quench – see below). 

(b)   (i)  The characteristic heat flow distance in a time t is given by √𝑎𝑡 where 𝑎 is the thermal 

diffusivity.  For a distance 𝑥 = √𝑎𝑡, erf(X) = erf(½)  ½, i.e. when the temperature has dropped by 

about half of the cooling interval.  From the shape of the error function, the length L of the bar 

needs to be many multiples of √𝑎𝑡 for the bar to be treated as semi-infinite.   

(Figure not expected:  √𝑎𝑡  ≪ 𝐿 is an acceptable 

answer, but from the figure a factor of 4-5 is 

sufficient). 

 

 

 

 

(ii)   For X < 0.7, erf(X)  X, so  
𝑇(𝑥,𝑡) − 𝑇0

𝑇1 − 𝑇0
 ≈  

𝑥

2√𝑎𝑡
 

For a reference temperature Tr, the time taken to reach it is:   𝑡𝑟 =  
𝑥2

4𝑎
(

𝑇1 − 𝑇0

𝑇𝑟 − 𝑇0
)

2

 

(iii)   Δ𝑇 = (𝑇𝑟1  − 𝑇𝑟2) 

        Δ𝑡 =  
𝑥2

4𝑎
 [(

𝑇1 − 𝑇0

𝑇𝑟2 − 𝑇0
)

2

− (
𝑇1 − 𝑇0

𝑇𝑟1 − 𝑇0
)

2

] 

Average cooling rate between Tr1 and Tr2 is T/t: 

Δ𝑇

Δ𝑡
 =   

4𝑎 (𝑇𝑟1  − 𝑇𝑟2)

𝑥2
  [(

𝑇1  − 𝑇0

𝑇𝑟2  − 𝑇0
)

2

−  (
𝑇1  − 𝑇0

𝑇𝑟1  − 𝑇0
)

2

]

−1

 

All the temperatures, and the thermal diffusivity 𝑎 are constants,  

so  
Δ𝑇

Δ𝑡
 =  

𝐶

𝑥2
 : see figure. 

 

 

(iv)  The temperature interval 700 to 500 oC spans the ‘nose’ of the TTT diagram, where the 

transformation to ferrite and pearlite is fastest – hence this is the critical part of the cooling history 

when the goal is to avoid these transformations to form martensite. 

  T1 – T0 = 1000 – 20 = 980oC                        Tr1 – Tr2 = 700 – 500 = 200oC 

  (T1 – T0) / (Tr2 – T0) = 980/(500 – 20) = 2.042 (T1 – T0) / (Tr1 – T0) = 980/(700 – 20) = 1.441 

  𝑎 = 10 
–5 m2/s 



Substituting into the cooling rate equation: 

Δ𝑇

Δ𝑡
 =   (

1

𝑥2)  4 × 10−5  ×  200 × [2.0422 − 1.4422]−1 =  
0.003825

𝑥2   

For 𝑎 = 1mm = 10–3 m, cooling rate = 3830 oC/s 

For 𝑎 = 30mm = 310–2 m, cooling rate = 4.25 oC/s 

(v)   In Figure 7.2 in the Materials Databook (plain C steel), the hardness is very high near the 

quenched end, indicating martensite, but falls rapidly to a much lower value by 30mm – at the 

lower cooling rate, ferrite and pearlite are formed.  In Figure 7.4 (low alloy steel), the high hardness 

is maintained right along the bar: martensite is formed throughout, at much lower cooling rates.  

The low alloy steel has the higher hardenability. 

(c)   For some distance from the quenched end, the cooling rate 

is fast enough to miss the C-curves for precipitation of 

coarse, equilibrium phases.  The result is a supersaturated 

solid solution, with a moderate hardness.  Far from the end, the 

cooling rate is low and equilibrium phases form, giving 

negligible precipitation hardening and using up all of the 

solute – the hardness is low (effectively the same as the 

overaged state).  There is a smooth transition between the two 

with increasing distance (falling cooling rate) as some 

coarse precipitation occurs, and the supersaturation falls 

below 100%.    

After ageing, the supersaturated region fully age hardens to the peak hardness.  Far from the end 

there is no change – it is already overaged.  In the transition zone, the available supersaturated 

solute leads to age hardening, but progressively falling in hardness due to the depleted supply of 

solute after the original cooling. 

  



Q5   (a)  Medium C steels are Fe with around        

0.3 – 0.5 wt% C – the phase diagram shows the 

cooling path for 0.3 wt% C. 

(i)  Normalisation: 

Starting with 100% FCC austenite at 900oC, at     

780 – 810 oC (depending on the C content), BCC 

ferrite nucleates on the austenite grain boundaries, 

rejecting C into the remaining austenite (as BCC 

dissolves a low amount of C). 

 

If equilibrium is followed, the proportions of ferrite: austenite reach about 50:50 when the 

temperature reaches the eutectoid temperature, 723 oC.  The remaining austenite, containing 0.8 

wt% C, transforms to the phases ferrite and iron carbide, in a plate-like microstructure in grains of 

pearlite (nucleating and growing from existing grain boundaries). 

Key mechanisms: 

From 800 to 723oC: ferrite nucleating from 

austenite grain boundaries; growth of ferrite by 

atomic transfer across the FCC-BCC boundary. 

 

 

Eutectoid transformation (across 723oC): 

Pearlite nucleation and growth require 

FCC austenite (0.8 wt% C) to 

simultaneously transform into (low C) 

BCC ferrite and iron carbide (Fe3C). The 

new phases grow in parallel plates to 

minimise the diffusion distance of C at 

the austenite–pearlite interface.  

(ii)  Quenching: 

Starting with 100% FCC austenite at 900oC, martensite forms over a 

temperature interval well below the eutectoid temperature (around       

300 oC). No diffusion is involved – needle-like grains of martensite 

nucleate on the austenite grain boundaries, and cross the grains at very 

high speed by a displacive transformation that changes FCC iron to BCC 

by imposing a shear strain.  Needles progressively form in large numbers 

until the austenite grains have been consumed. The carbon remains in 

supersaturated solution in the BCC lattice.  

 

 

 



(b)   The chart shows likely positions of 0.4 

wt% C after the 3 heat treatments, with the 

values explained as follows: 

(i)  Normalised:  the microstructure 

consists of grains of ferrite and pearlite, 

with almost all the carbon in the iron 

carbide within the pearlite.  So going from 0.2 

to 0.6 wt% C, the proportion of iron 

carbide and this pearlite increases in 

proportion.  Iron carbide is the hard phase, so 

the yield stress lies between A and B.  

Similarly, the pearlite plates offer the 

easiest route for crack propagation, while 

ferrite is most resistant – so the fracture 

toughness will also lie between A and B. 

(ii) After quenching, 100% martensite is formed.  The toughness is near zero; the yield stress is high 

compared to ferrite and pearlite, by a factor of 4-5. 

(iii) After quenching and tempering, iron carbide precipitates and the martensite lattice relaxes to 

equilibrium ferrite.  The precipitates are fine scale, and all the grains have the same microstructure.  

The yield stress is higher than in the normalised condition (typically by 50%), and the avoidance of 

plates of iron carbide (as in pearlite) also enhances the fracture toughness.    

(c)  X is grey cast iron: the microstructure is coarser than a normalised steel, with carbon forming 

graphite flakes.  This limits the fracture toughness, while the yield stress is low due to the coarse 

scale of the second phases (iron carbide and graphite).   

Applications: drain covers, disk brakes, ornamental railings.   

Design requirements: low cost, complex 3D shapes. 

Y is stainless steel: the microstructure is (usually) austenitic (FCC), hardened by high solid solution 

levels and work hardening, not precipitation hardening – this gives an average yield stress, but very 

high fracture toughness. 

Applications:  chemical/cryogenic pipework/pressure vessels, cutlery. 

Design requirements: corrosion resistance. 

Z is quenched/tempered high alloy steel:  medium to high C, with high additions of alloying 

elements (Mo, V, W).  Alloying gives high hardenability (enabling air cooling to minimise thermal 

stresses during quenching), high solid solution strength, and the formation of fine-scale tempered 

microstructure, with alloy carbides giving high precipitation hardening.   Hence yield stress if very 

high (including at temperature), while uniform fine-scale microstructure gives moderate fracture 

toughness. 

Applications:  cutting tools 

Design requirements: quite complex shapes with sharp cutting edges. 

 

  



Q6 

 

 

 

 

 

 

 

 

 

(a) (i)  

A. Cu-rich single solid phase () 

B. 2-phase field ( and Liquid) 

C. Single Liquid phase 

D. 2-phase field ( and Liquid) 

E. Ag-rich single solid phase () 

F. 2-phase solid field ( and ) 

(ii)  X: Solidus line, indicating the higher boundary of the solid phase field (), below which the alloy 

has completely solidified. 

Y: Liquidus line, indicating the lower boundary of the liquid phase field, below which the solid phase 

nucleates. 

Segregation refers to the rejection of solute from the 

growing solid phase into the liquid because of solute 

partitioning: the solid that forms from a given 

composition of liquid is purer than the liquid.  In 

equilibrium solidification, the composition of the solid 

and the liquid both increase as the temperature falls in 

the liquid + solid field.  In reality, however, this is often 

not the case because of slow diffusion of solute back 

into the solid, so a gradient of concentration is built up 

from centre to the outside of the grains.  The highest 

concentration of solute is found at the grain boundaries. 

 

 

 

 

 

 



(b) (i) As the melt cools down below ~880C, the first solid -phase nucleates in the liquid. Initially, 

the nuclei are purer compared to the nominal alloy composition, but they incorporate more Cu as the 

temperature decreases (and as they grow). At a temperature of ~780C, just above the eutectic 

temperature, only a small fraction of liquid remains in the microstructure (~10 wt%). Just below the 

eutectic temperature, this liquid transforms into the eutectic microstructure  + , with a characteristic 

needle-like/lamellar structure. On further cooling, the  and  components within the eutectic 

microstructure become purer and the phase fractions adjust.  Precipitation of Cu-rich  may take 

place within the  grains, which are increasingly supersaturated in Cu as the temperature falls (this 

depends on the ease with which nuclei of  can form). 

 

(ii) No significant differences except from some coarsening of the  precipitates in the  grains. This 

is because the microstructure is already at equilibrium. But coarsening precipitates would potentially 

lead to a drop in yield stress. 

 

(c) (i) J indicates the eutectic composition for this Cu-Ag alloy. At this composition, the alloy 

solidifies completely as its temperature decreases below the (eutectic) temperature of 779C. Since 

there is no freezing range, this composition is ideal for casting because the melt has low viscosity. It 

is also the lowest temperature at which 100% liquid can be formed – energy-efficient reducing costs, 

and increasing productivity. 

(ii) The alloy composition corresponding to point K indicates the maximum solubility limit of . If 

an alloy with this composition is cooled rapidly and then aged at a temperature below the solvus line, 

it may form a high density of Cu-rich precipitates which will strengthen the alloy. 

 

 


