ENGINEERING TRIPOS PART IB 2014

SOLUTIONS TO PAPER 4 - THERMOFLUID MECHANICS

Question 1

(a)(i) The processes between the following states are:

1 to 2 compressor;
2 to 3 condenser (constant pressure);
3 to 4 throttle (assume isenthalpic, i.e. adiabatic with negligible change in kinetic energy);
4 to 1 evaporator (constant pressure).

(a)(ii) To find compressor specific work, w_{c}

From R-134a Table in Data Book:
$h_{1}=386.5 \mathrm{~kJ} / \mathrm{kg}$
$h_{2}=435.4 \mathrm{~kJ} / \mathrm{kg}$
$w_{\mathrm{c}}=h_{2}-h_{1}=48.9 \mathrm{~kJ} / \mathrm{kg}$ (work input)
To find compressor isentropic efficiency, η
$p_{2}=7.70$ bar (table)
$s_{2 \mathrm{~s}}=s_{1}=1.7410 \mathrm{~kJ} / \mathrm{kg} \mathrm{K}$ (table)
$h_{2 \mathrm{~s}}=420 \mathrm{~kJ} / \mathrm{kg}$ (from chart in Data Book)

$$
\eta=\frac{h_{2 s}-h_{1}}{h_{2}-h_{1}}=\frac{420-386.5}{435.4-386.5}=0.69
$$

(a)(iii) $\mathrm{COP}_{\mathrm{R}}=$ specific heat input in evaporator / specific work input in compressor $h_{4}=h_{3}=241.7 \mathrm{~kJ} / \mathrm{kg}$ (table)

$$
\mathrm{COP}_{\mathrm{R}}=\frac{h_{1}-h_{4}}{h_{2}-h_{1}}=\frac{386.5-241.7}{48.9}=2.96
$$

(b)(i) The processes between the following states are:

1 to 2 feed pump;
2 to 3 heat addition in boiler (constant pressure);
3 to 4 turbine;
4 to 1 heat rejection in condenser (constant pressure).

(b)(ii) At turbine inlet (from table),
$h_{3}=428.8 \mathrm{~kJ} / \mathrm{kg}$
$s_{3}=1.6848 \mathrm{~kJ} / \mathrm{kg} \mathrm{K}$
saturation conditions at $10^{\circ} \mathrm{C}$ (from table):
$s_{4 \mathrm{f}}=1.0486 \mathrm{~kJ} / \mathrm{kg} \mathrm{K}$
$s_{4 \mathrm{~g}}=1.7222 \mathrm{~kJ} / \mathrm{kg} \mathrm{K}$
$h_{4 \mathrm{f}}=213.6 \mathrm{~kJ} / \mathrm{kg}$
$h_{4 \mathrm{~g}}=404.3 \mathrm{~kJ} / \mathrm{kg}$
$s_{4 \mathrm{~s}}=s_{3}$ (isentropic expansion)
dryness fraction at 4 s is $x_{4 \mathrm{~s}}$,

$$
x_{4 s}=\frac{s_{4 s}-s_{4 f}}{s_{4 g}-s_{4 f}}=\frac{1.6848-1.0486}{1.7222-1.0486}=0.94
$$

enthalpy at 4 s ,

$$
h_{4 s}=h_{4 f}+x_{4 s}\left(h_{4 g}-h_{4 f}\right)=213.6+0.94(404.3-213.6)=393.7 \mathrm{~kJ} / \mathrm{kg}
$$

isentropic efficiency of the turbine is 0.85 ,

$$
0.85=\frac{h_{3}-h_{4}}{h_{3}-h_{4 s}}
$$

so the turbine specific work output, w_{t} is given by

$$
w_{t}=h_{3}-h_{4}=0.85\left(h_{3}-h_{4 s}\right)=29.8 \mathrm{~kJ} / \mathrm{kg}
$$

(b)(iii)

Superheating will:

- increase the turbine specific work output (increase h_{3});
- increase the cycle efficiency (average temperature of heat addition has increased so Carnot efficiency (of reversible cycle) will increase);
- flow in turbine will be drier. Wetness in turbine reduces turbine isentropic efficiency and also erodes turbine blades. Hence, drier flow in turbine will raise turbine isentropic efficiency and hence raise the cycle efficiency.

Question 2

(a)(i) SFEE (steady flow energy equation): $\quad h_{2}-h_{1}=-w_{x}+q$

SFSE (steady flow entropy equation): $\quad s_{2}-s_{1}=\int_{1}^{2} \frac{d q}{T}+\Delta s_{\text {irrev }}$
From availability definition:

$$
b_{2}-b_{1}=h_{2}-h_{1}-T_{0}\left(s_{2}-s_{1}\right)
$$

hence:

$$
\begin{aligned}
& b_{2}-b_{1}=-w_{x}+q-T_{0} \int_{1}^{2} \frac{d q}{T}-T_{0} \Delta s_{\text {irrev }} \\
& b_{2}-b_{1}=-w_{x}+\int_{1}^{2}\left(1-\frac{T_{0}}{T}\right) d q-T_{0} \Delta s_{\text {irrev }}
\end{aligned}
$$

Note: the quantities in the above derivation are all specific (per kg) and are therefore written in lower case letters with no dots above them. Dots are reserved for quantities that are rates (per s).
(a)(ii) First term on rhs is change in power potential due to shaft work output. Second term on rhs is change in power potential due to heat input.
Third term on rhs is change in power potential due to irreversibilities in the process (e.g. viscous dissipation or heat transfer across a finite temperature difference)
(b)(i) Control volume around whole heat exchanger and assume no heat flow in/out of control volume.
Stream 1 enters at 900 K , stream 2 enters at 1800 K ,

$$
\dot{m}_{1} \Delta h_{1}+\dot{m}_{2} \Delta h_{2}=0
$$

and $\Delta h=c_{p} \Delta T$ so,

$$
\begin{gathered}
20 \times 1.01 \times\left(T_{m}-900\right)+80 \times 1.01 \times\left(T_{m}-1800\right)=0 \\
T_{m}=1620 \mathrm{~K} .
\end{gathered}
$$

(b)(ii) Lost power potential is due to irreversibilities (heat transfer across a finite temperature difference).

Control volume around whole heat exchanger, no heat transfer in/out of control volume so only change in entropy is due to irreversibilities:

$$
\Delta S_{\text {irrev }}=\dot{m}_{1} \Delta s_{1}+\dot{m}_{2} \Delta s_{2}=20 c_{p} \ln \left(\frac{1620}{900}\right)+80 c_{p} \ln \left(\frac{1620}{1800}\right)=3.36 \mathrm{~kJ} / \mathrm{K}
$$

Lost power potential is given by

$$
T_{0} \Delta S_{\text {irrev }}=300 \times 3.36 \mathrm{E} 3=1.01 \mathrm{MW}
$$

(b)(iii)

$$
\begin{gathered}
\dot{W}_{x}=\left(\dot{m}_{1}+\dot{m}_{2}\right) c_{p} T_{m}\left(1-\left(\frac{1}{20}\right)^{\frac{\gamma-1}{\gamma}}\right) \\
\dot{W}_{x}=100 \times 1.01 \mathrm{E} 3 \times 1620\left(1-\left(\frac{1}{20}\right)^{\frac{\gamma-1}{\gamma}}\right)=94.1 \mathrm{MW}
\end{gathered}
$$

(c)

$$
\begin{array}{r}
\dot{W}_{x}=\dot{W}_{x 1}+\dot{W}_{x 2}=\dot{m}_{1} c_{p} T_{1}\left(1-\left(\frac{1}{20}\right)^{\frac{\gamma-1}{\gamma}}\right)+\dot{m}_{2} c_{p} T_{2}\left(1-\left(\frac{1}{20}\right)^{\frac{\gamma-1}{\gamma}}\right) \\
\dot{W}_{x}=\left(\dot{m}_{1} c_{p} T_{1}+\dot{m}_{2} c_{p} T_{2}\right)\left(1-\left(\frac{1}{20}\right)^{\frac{\gamma-1}{\gamma}}\right)=\left(\dot{m}_{1}+\dot{m}_{2}\right) c_{p} T_{m}\left(1-\left(\frac{1}{20}\right)^{\frac{\gamma-1}{\gamma}}\right)=94.1 \mathrm{MW}
\end{array}
$$

This is the same power output as part (b)(iii). However, the power potential of the combined exhaust flows in part 2(c) will be greater than that of the exhaust of the turbine of part 2(b) due to the lost power potential in part 2(b)(ii).
(d) The two streams would need to be brought to the same temperature by running a reversible heat engine between the hot stream and cold stream. The power potential that was lost in part 2(b) would then be obtained as a power output from the heat engine.

Question 3

(a) The radial heat flux per unit area is given by

$$
\dot{q}_{r}=-\lambda \frac{d T}{d r}
$$

The total heat flux at each radius is constant at

$$
\dot{Q}_{r}=2 \pi \lambda r \frac{d T}{d r}
$$

so that,

$$
T_{r=r 2}-T_{r=r 1}=\frac{\dot{Q}_{r}}{2 \pi \lambda} \int_{1}^{2} \frac{d r}{r}=\frac{\dot{Q}_{r}}{2 \pi \lambda} \ln \left(r_{2} / r_{1}\right)
$$

and,

$$
R_{T}=\frac{\Delta T}{\dot{Q}}=\frac{\ln \left(r_{2} / r_{1}\right)}{2 \pi \lambda}
$$

(b)(i) One correlation is for laminar flow, one is for turbulent flow.

In laminar flow, heat is transferred by diffusion. In turbulent flow, heat is transferred by the fluid motion of the turbulent eddies. The turbulent flow has a higher radial temperature gradient at the wall and a higher surface heat transfer coefficient.
(b)(ii) From table for transport properties of air in Data Book, at $50^{\circ} \mathrm{C}$:
$\mu=19.5 \mathrm{E}-6 \mathrm{~kg} / \mathrm{sm}$
$\mathrm{Pr}=0.71$
$\lambda=0.028 \mathrm{~W} / \mathrm{mK}$

$$
\begin{gathered}
\rho=\frac{p}{R T}=\frac{101325}{287 \times 323.15}=1.09 \mathrm{~kg} / \mathrm{m}^{3} \\
V=\dot{m} /(\rho A)=1 /\left(1.09 \times \pi 0.1^{2}\right)=29.1 \mathrm{~m} / \mathrm{s}
\end{gathered}
$$

Reynolds number,

$$
\operatorname{Re}=\frac{\rho V d}{\mu}=\frac{1.09 \times 29.1 \times 0.2}{19.5 \times 10^{-6}}=326000 \Rightarrow \text { turbulent }
$$

Using turbulent correlation in Data Book,

$$
\mathrm{Nu}=0.023 \mathrm{Re}^{0.8} \mathrm{Pr}^{0.4}=0.023 \times 326000^{0.8} \times 0.71^{0.4}=517
$$

$$
h_{\mathrm{int}}=\mathrm{Nu} \frac{\lambda}{d}=517 \frac{0.028}{0.2}=72.3 \mathrm{~W} / \mathrm{m}^{2} \mathrm{~K}
$$

(b) (iii)

$$
\begin{gathered}
R_{\text {TOT }}=\frac{1}{h_{\text {int }} 2 \pi r_{1}}+\frac{\ln \left(r_{2} / r_{1}\right)}{2 \pi \lambda_{\text {pipe }}}+\frac{\ln \left(r_{3} / r_{2}\right)}{2 \pi \lambda_{\text {ins }}}+\frac{1}{h_{\text {ext }} 2 \pi r_{3}} \\
R_{\text {TOT }}=\frac{1}{2 \pi}\left(\frac{1}{72.3 \times 0.1}+\frac{\ln (0.11 / 0.1)}{0.2}+\frac{\ln (0.16 / 0.11)}{0.05}+\frac{1}{200 \times 0.16}\right) \\
R_{\text {TOT }}=0.022+0.076+1.193+0.005=1.30 \mathrm{~K} / \mathrm{Wm}
\end{gathered}
$$

(b)(iv)

For a small element of the pipe (a slice of width δx),

$$
-\dot{m} c_{p} \frac{d T}{d x} \delta x=\frac{\left(T-T_{\infty}\right)}{R_{\text {TOT }}} \delta x
$$

Integrating gives

$$
\frac{T-T_{\infty}}{T_{1}-T_{\infty}}=\exp \left(\frac{-x}{R_{\text {TOT }} \dot{m} c_{p}}\right)
$$

When $\left(T-T_{\infty}\right)$ is half of the inlet value,

$$
x=-\ln (0.5) \dot{m} c_{p} R_{T O T}=0.693 \times 1 \times 1.01 \times 10^{3} \times 1.30=910 \mathrm{~m}
$$

$4(a)$

Sheur forcz on inner surface

$$
F_{\tau}=\tau_{r z} 2 \pi r d z
$$

Net shear forse on ellement

$$
d F_{2}=\frac{\partial F_{x}}{\partial r} d r=\frac{\partial}{\partial r}\left(\tau_{z} 2 \pi r\right) d r d z
$$

Pessure force on frons $=$ pziridr
Net pressure force on element $=-\frac{d}{d z}(p 2 \pi r i) d z=-\frac{d p}{d z} 2 \pi r d r d$
Fhid is not accolerating, so forces ballance:

$$
\begin{aligned}
& -\frac{d p}{d z} 2 \pi r d r d z+\frac{\partial}{\partial r}\left(\tau_{r z} 2 \pi r\right) d r d z=0 \\
& \Rightarrow \quad-\frac{1 p}{d z} r+\frac{\partial}{\partial r}\left(r \tau_{r z}\right)=0 \\
& \Rightarrow \quad \frac{1}{r} \frac{\partial}{\partial r}\left(r \tau_{r z}\right)=\frac{\frac{1 p}{d z}}{} \\
& \Rightarrow \quad \frac{1}{r} \frac{\partial}{\partial r}\left(r \tau_{r z}\right)=-\left\lvert\, \frac{d p}{d z} \quad(ग p / d z<0)\right.
\end{aligned}
$$

(b) Intigratz:

$$
\simeq \operatorname{rrz}=+\left|\frac{c p}{d z}\right|\left\{B-\frac{r^{2}}{2}\right\}
$$

Noutons low of vesurity: $\tau_{-z}=\mu \frac{d u_{z}}{d r}$

$$
\begin{aligned}
& \Rightarrow \quad \mu \frac{d u_{z}}{d r}=\left|\frac{d p}{d z}\right|\left\{\frac{B}{r}-\frac{r}{2}\right\} \\
& \Rightarrow \quad u_{z}=\frac{1}{\mu}\left|\frac{d p}{d z}\right|\left\{A-\frac{r^{3}}{4}+B \ln r\right\}
\end{aligned}
$$

(c) No slip condition: $\quad u_{z}=0$ on $r=R$; $r=R_{0}$

$$
\begin{aligned}
& \quad\left\{\begin{array}{l}
0=\frac{1}{\mu}\left|\frac{d p}{d z}\right|\left\{A-\frac{R_{i}^{2}}{4}+B \ln R_{i}\right\} \\
0=\frac{1}{\mu}\left|\frac{d p}{d z}\right|\left\{A-\frac{R_{0}^{2}}{4}+B \ln R_{0}\right\} \\
\Rightarrow \quad\left\{\begin{array}{l}
A+B \ln R_{i}=R_{i}^{2} / 4 \\
A+B \ln R_{0}=R_{0}^{2} / 4
\end{array}\right. \\
\Rightarrow \quad B \ln \left(R_{0} / R_{i}\right)=\frac{1}{4}\left(R_{0}^{2}-R_{i}^{2}\right) \\
\Rightarrow \quad B=\frac{R_{0}^{2}=R_{i}^{2}}{4 \ln \left(R_{i} R_{i}\right)}
\end{array}\right.
\end{aligned}
$$

(d) Sheor stes un iner suffore is

$$
r_{r z}=\frac{1}{R_{i}}\left|\frac{d \rho}{d z}\right|\left\{B-R^{2} / 2\right\}
$$

Ner shar fure $F_{n}=2 \pi R_{i} \tau_{r z}=2 \pi \left\lvert\, \frac{d_{p}}{d z}\left[\left\{B-R_{i}^{2} \mid \alpha\right\}\right.\right.$

$$
\Rightarrow \quad F_{2}=2 \pi\left|\frac{d p}{d z}\right|\left\{\frac{R_{0}^{2}-R_{i}^{2}}{4 \ln \left(R_{0} R_{i}\right)}-\frac{R_{i}^{2}}{2}\right\}
$$

$5(4)$

Net forces on $G_{1} V=P_{1} A_{2}-P_{2} A_{2}$ (in axial direction)
Net flux of momentum out of $C V_{2}=\dot{m}\left(V_{2}-V_{1}\right)=V_{2} A_{2} \rho\left(V_{2-1}\right.$
Force-momentum equation:

$$
\begin{aligned}
\left(P_{1}-P_{2}\right) A_{2} & =\rho A_{2} v_{2}\left(v_{2}-v_{1}\right) \\
\Rightarrow \quad P_{2}-P_{1} & =\rho v_{2}\left(v_{1}-v_{2}\right)
\end{aligned}
$$

(b)

$$
\begin{aligned}
& \text { Bernoulli: energy upstream }=P_{1}+\frac{1}{3} \rho v_{1}^{2} \\
& \text { energy down treen }=P_{2}+\frac{1}{3} \rho v_{2}^{2} \\
& \text { energy loss }=P_{1}+\frac{1}{2} \rho v_{1}^{2}-\left(p_{2}+\frac{1}{2} \rho v_{2}^{2}\right) \\
&=P_{1}-p_{2}+\frac{1}{3} \rho\left(v_{2}^{2}-v_{2}^{2}\right) \\
&=-\rho v_{2}\left(v_{1}-v_{2}\right)+\frac{1}{2} \rho\left(v_{1}^{2}-v_{2}^{2}\right) \\
&=\frac{1}{2} \rho\left(v_{1}^{2}-v_{2}^{2}-2 v_{1} v_{2}+2 v_{2}^{2}\right) \\
&=\frac{1}{2} \rho\left(v_{1}^{2}-2 v_{1} v_{2}+v_{2}^{2}\right) \\
&=\frac{1}{2} \rho\left(v_{1}-v_{2}\right)^{2}
\end{aligned}
$$

(c)

Net Force on CV is $=P_{1} A_{2}=P_{2} A_{2}$ - Tarsal in wives

$$
=P_{1} A_{2}-P_{2} A_{2}-F_{1}
$$

Net flux of momentum our of $C V=\rho A_{2} v_{2}\left(V_{2}-V_{1}\right)$
(as before)
Forse momentum equation:

$$
\begin{aligned}
&\left(P_{1}-P_{2}\right) A_{2}-F_{d}=\rho A_{2} V_{2}\left(V_{2}-V_{1}\right) \\
& \Rightarrow P_{1}-P_{2}=\frac{F_{j}}{\pi R_{2}^{2}}+\rho V_{2}\left(V_{2}-V_{1}\right) \\
&=\frac{\Gamma d}{\pi R_{2}^{2}}+\rho V_{2}\left(V_{2}-V_{1}\right)+\frac{1}{2} \rho\left(V_{1}^{2}-V_{2}^{2}\right) \\
&=\frac{P_{1}+\frac{1}{2} \rho V_{1}^{2}-\left(P_{2}+\frac{1}{2} \rho V_{2}^{2}\right)}{\text { name as in }(b)} \\
&=\frac{F_{2}^{2}}{\pi R_{2}^{2}}\left(V_{1}-V_{2}\right)^{2}
\end{aligned}
$$

Flim elenent has ratilly inout vcceloratis of u_{0}^{2} / r. Ther max be a munul forre as elemur to mántais dis oceberatur.

Neveton II:

$$
\begin{aligned}
& \frac{u_{\theta}^{2}}{r}(p d V)=\left(P+\frac{t p}{d r} d r\right) d A-P d A \\
& \Rightarrow \quad \frac{u_{0}^{2}}{r}(\rho d r d A)=\frac{d p}{d r} d r d A \\
& \Rightarrow \quad \frac{d p}{d r}=\rho \frac{u_{0}^{2}}{r} \\
& u_{\theta}=\Omega r=\frac{d \rho}{A r}=\rho \Omega^{2} r \Rightarrow \frac{\rho-P_{0}=\frac{1}{2} \rho \Omega^{2} r^{2}}{\text { centeline pempe. }}
\end{aligned}
$$

(b) $\delta=f(\Omega, \nu)$ (No vibe vorubles at our disporal).

$$
\begin{array}{lll}
p & 1 & p \\
m & s^{-1} & m^{2} / \mathrm{s}
\end{array}
$$

T Theorem: number of variables $=3$

$$
\begin{aligned}
& \text { number of dimerisiors }=2 \\
& \Rightarrow \quad \text { number of dimersionlejs yroups }=1
\end{aligned}
$$

By inspaction, $\frac{\delta^{2} \Omega}{\nu}$ is cimprisionless.
Since there are no othen dimensiopless gioups we have $\delta_{\partial}^{2} \Omega / \nu=$ coistant, or $\quad \delta \sim \sqrt{\nu / \Omega}$.
(c)

Consider a fluid element in boundary layer.
There is a racial pressure gradient of

$$
\frac{d p}{d r}=\rho \Omega^{2} r
$$

The centripetal acceleration within the boundary luger is lower because no is smaller. Thus the radial pressure force is greater than u_{0}^{2} / r, and this excess force drives a racial inflow,
(d)

Conservation of mass

$$
\begin{aligned}
& 2 \pi r \delta u_{z} \sim r r^{2} u_{z} \\
\Rightarrow \quad & \delta u_{r} \sim r u_{z}
\end{aligned}
$$

But $u_{r} \sim S_{s} \sim \Omega_{r} \Rightarrow \Rightarrow r u_{z} \sim \partial \Omega r$

$$
\Rightarrow \quad u_{z}-\delta \Omega
$$

