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1 (a) A system is linear if, whenever an input u1(t) results in an output y1(t), and
an input u2(t) results in an output y2(t), then an input u1(t)+ u2(t) results in an output
y1(t)+ y2(t). [or: an input u1(t) results in an output y1(t), and an input u2(t) results in
an output y2(t), then an input λ1u1(t)+ λ2u2(t) results in an output λ1y1(t)+ λ2y2(t),
where λ1, λ2 are constants.] [5]

(b) We can write down the following for the given closed loop system:

ȳ(s) = d̄(s)+G(s)ū(s)

ū(s) = K(s)ē(s)

ē(s) = r̄(s)− ȳ(s)

therefore we can eliminate ū and ē to give

ȳ(s) = d̄(s)+G(s)K(s)(r̄(s)− ȳ(s))

=⇒ ȳ(s) =
1

1+G(s)K(s)
d̄(s)+

G(s)K(s)
1+G(s)K(s)

r̄(s)

We can also express ū in terms of r̄ and d̄:

ū(s) = K(s)[r̄(s)− (d̄(s)+G(s)ū(s))]

=⇒ ū(s) =
K(s)

1+G(s)K(s)
r̄(s)− K(s)

1+G(s)K(s)
d̄(s)

This therefore enables us to answer (i),(ii) and (iii).

(i)

ȳ(s) =
K(s)G(s)

1+K(s)G(s)
r̄(s)

this should be close to 1 at low frequencies in order to obtain good
tracking.

(ii)

ȳ(s) =
1

1+K(s)G(s)
d̄(s)

this should be small in order to obtain low sensitivity to disturbances
and modelling errors.
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(iii)

ū(s) =
K(s)

1+K(s)G(s)
d̄(s)

this should not be too large, as it determines the control effort in
response to disturbances.

[7]

(c) We know that the steady state response to a step input is the transfer function
evaluated at s = 0. Therefore:

(i) We saw above that the transfer function relating y and r (and assuming
d = 0), was K(s)G(s)

1+K(s)G(s) , so that

KG
1+KG

∣∣∣∣
s=0

=
3/5

1+3/5
=⇒ y(t)→ 3/8

(ii) We also saw above that the transfer function relating y and d (and
assuming r = 0), was 1

1+K(s)G(s) . When applied to a sinusoidal input we
know that steady state implies the gain factor, ie the quantity which changes
amplitude and phase. Since output for input e jω0t is the convolution with the
impulse response, which then gives e jω0tG( jω0), we therefore evaluate G(s)
at s = jω0:

1
1+KG

∣∣∣∣
s= jω0

=
(2 j+1)(2 j+5)

(2 j+1)(2 j+5)+3
= 0.952 ∠ 0.239(rad)

=⇒ y(t)→ 0.952cos(ω0t +0.239)

(iii) using linearity ( d input is now e j(ω0t+π/3), so output due to d is also
e j(ω0t+π/3)) we have

y→ 2×3/8+0.952cos(ω0t +0.239+π/3)

[8]

(d) In order to achieve zero steady state error we need K(0)→ ∞, so the simplest
way of achieving this is to require an integral action, e.g. K(s) = kp+ki/s. One option is

therefore to use both ki = kp = 3, so that K(s) = 3+3/s = 3 (s+1)
s .

=⇒ K(s)G(s) = 3
s(s+5)
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There are many other reasonable choices of numbers, although the controller zero
should not be at a frequency much greater than 1. [5]

A straightforward and popular question. Well done on the whole, although a large
number of candidates had difficulty finding the steady state response to a sinusoidal input.

2 (a) The Bode diagram (|G| on log-log plot [y axis in dB] and ∠G on log-linear
plot) is shown in figure 1. Though a correct answer will obtain this curve by sketching
the straight line asymptotes and approximations and rounding the corners appropriately.

Fig. 1

The way of sketching this is to split the transfer function up into its constituent parts
and look at the contribution of each part to the Bode plot.

Note that ∠G( jω) =−∠( jω)−2∠(1+0.5 jω) =−π/2−2∗ tan−1 ω
2

So that ∠G =−180◦ at ω = 2 (as second term is then 2∗π/4).

At ω = 2, |G( j2)|= 10
2(12+12)

= 2.5

=⇒ need kp < 1
2.5 = 0.4 [6]

(b) kp = 0.4/2 = 0.2, =⇒ 0.2∗ 10
ω(ω2/4+1)

= 1 =⇒ ω ≈ 1.4
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The angle when we have a magnitude of 1 (ie at ω = 1.4) is given by

∠=−90◦−2tan−1(1.4×0.5)≈−160◦

Steady state error = 1
1+L(s) |s=0 = 0 [6]

(c) See plot. Firstly write our new K as K(s) = 0.2× 1+s
1+s/4 . Amplitude = 1 at

ω = 2 and angle = 37◦ at ω = 2. =⇒ phase margin = 37◦ and gain margin ≈ 10dB [8]

(d) (c) has greater gain (10dB vs 6dB) and greater phase margins. This implies
that the closed loop system is less oscillatory. B/W is greater by a factor of about 2, which
implies a faster response. [5]

This question was straightforward, but proved to be time consuming, as they were
asked to produce both the uncompensated and compensated diagrams. There were,
however, a large number of very good solutions.

3 (a) 4e−0.25 jω
jω which we can write as

L( jω) =
4
ω

e− j(ω/4+π/2)

So that amplitude is 4/ω and phase is −(ω/4+π/2).

As ω→ 0 we can take just the first two terms in the expansion of the exponential to
give

4
1−0.25 jω

jω
=

4
jω
−1

ω 2 5 10
|L| 2 0.8 0.4
∠L -0.5 −π/2 −1.25−π/2 −2.5−π/2

The Nyquist diagram is shown (note the asymptote at -1) in figure 2.

[10]

(b) For a phase of −π we have −(ω/4+π/2) =−π , so that ω = 2π = 6.28.
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Fig. 2

Magnitude is 4/ω = 4/(2π) = 2/π , so that the Gain Margin = π/2 = 1.57. [5]

(c) If k = 4 our amplitude is 4/ω which should be 1, therefore ω = 4.

The phase is then −(ωτ +π/2) – equating this to −π gives us τ = π/8 = 0.39. [5]

(d) From part (b), we know that ω = 2π , so that we need k/ω = (2)−1 giving
k = π .

In general we have τω = π/2 so amplitude = k/ω = k/(π/2τ) = 2τk/π . If this
quantity is 1/2 for a GM of 2, we have k = 0.25π/τ so that k varies like 1/τ . [5]

Although this was the least popular question of this section, it was well answered
by most who attempted it.

4 (a) Since we are told to do this by direct integration we need to evaluate the
following integral:

Version: jl/gv (cont.



7

F(ω) =
∫

∞

−∞

f (x)e− jωx dx

=
∫ a

−a
e− jωx dx =

[
e− jωx

− jω

]a

−a
=− 1

jω
[e− jωa− e jωa]

= 2asincωa

For a pulse of height a′ and width b centred on the origin, the databook gives the
FT as

a′bsinc
ωb
2

So, if a′ = 1 and b = 2a this gives 2asincωa, which agrees with our answer above. [5]

(b) The inverse FT of F(ω) is given by:

f (x) =
1

2π

∫
∞

−∞

F(ω)e jωx dω

=
1

2π

∫
∞

−∞

2a
sinaω

aω
e jωx dω

Thus
f (0) = 1 =

1
2π

∫
∞

−∞

2
sinaω

ω
dω =

1
π

∫
∞

0
2

sinaω

ω
dω

Since the integrand is even. If we then take a = 2, this gives

1 =
1
π

∫
∞

0
2

sin2ω

ω
dω =

1
π

∫
∞

0
2

2sinω cosω

ω
dω

Which gives us the required result:

∫
∞

0

sinω cosω

ω
dω =

π

4
[6]

(c) The FT of h(x) is given by

H(ω) =
∫

∞

−∞

f (x)g(x)e− jωx dx
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Substituting for g(x) in terms of G gives

H(ω) =
∫

∞

−∞

f (x)
1

2π

∫
∞

−∞

G(u)e juxe− jωx dudx =
∫

∞

−∞

f (x)
1

2π

∫
∞

−∞

G(u)e− j(ω−u)x dudx

Now let ω ′ = ω − u, so that u = ω −ω ′ and du = −dω ′, the above equation now
becomes

H(ω) =
1

2π

∫
∞

x=−∞

[∫
∞

ω ′=−∞

f (x)e− jω ′xdx
]

G(ω−ω
′)dω

′

=
1

2π

∫
∞

ω ′=−∞

F(ω ′)G(ω−ω
′)dω

′

as required. [6]

(d) The function h(x) is a half cosine pulse between −π/2 and π/2, which is
sketched below:

−π/2 π/2 x

The FT of the pulse g(x) is G(ω) = πsincωπ
2 (from Part (a)) and the FT of f (x) is

F(ω) = π [δ (ω−1)+δ (ω +1)]

Thus using the result in part (c) we can convolve to give the FT of h(x)

H(ω =
1

2π

∫
∞

ω ′=−∞

π
[
δ (ω ′−1)+δ (ω ′+1)

]
πsinc

(ω−ω ′)π
2

dω
′

=
π

2

[
sinc

(ω−1)π
2

+ sinc
(ω +1)π

2

]
In the databook we have the following result for a half-cosine pulse of height a and

width b centred on the origin:
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ab
2

[
sinc

(ωb−π)

2
+ sinc

(ωb+π)

2

]
which corresponds to the result above putting a = 1 and b = π . [8]

This was the most popular question in Section B. Part (a) was straightforward and
was done easily by almost all candidates, though many thought that saying ‘ the form
therefore agrees with the Databook’ was a sufficient answer for the last part. Part (b)
caused the most difficulty, with many students barely attempting it – luckily Part (c) did
not depend on (b). Most candidates made a good attempt at Part (c), though there were
many answers which made little sense – with a common mistake being lack of care with
variables when substituting. Part (d) was generally well done, though the same comment
as above re the databook applied.

5 (a) (i) The DFT is given by

Xk =
N−1

∑
n=0

xne
−2πikn

N 0≤ k ≤ N−1

Here, N=4, so we evaluate {X0,X1,X2,X3}.
For k = 0:

X0 = 1e
−2πi0×0

4 +0−1e
−2πi0×2

4 +0 = 1−1 = 2

For k = 1:

X0 = 1e
−2πi1×0

4 +0−1e
−2πi1×2

4 +0 = 1− e−iπ = 2

For k = 2:

X0 = 1e
−2πi2×0

4 +0−1e
−2πi2×2

4 +0 = 1− e−2iπ = 0

For k = 3:

X0 = 1e
−2πi3×0

4 +0−1e
−2πi3×2

4 +0 = 1− e−3iπ = 2

Therefore, our DFT sequence is {0,2,0,2} which is given in figure ??:
The kth DFT component corresponds to a frequency of k

NT = k/(4×
0.25) = k, therefore the frequencies of Xn are (in Hz) {0,1,2,3}. [5]
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Fig. 3

(ii) We see from above that there are two non-zero terms, at 1Hz and 3Hz,
in the DFT. The signal is a pure sinusoid of frequency 1Hz (ω = 2π so that
f =ω/(2π) = 1Hz). However we know that the DFT is the FT of the periodic
repetition of the sample signal and therefore also gives a periodic discrete
signal – of which we just take the first N components. The frequencies of
±1Hz are therefore repeated at every interval of the sampling frequency, so
that the −1Hz manifests itself as 3Hx in the 4 DFT components.

We also know that the second half of the DFT space is the complex
conjugate of the first half of the space (can see this easily from the equation),
so we know the 4th component has to be 2 if the second component is 2. [5]

(b) (i) From the Nyquist sampling theorem, we know that the minimum
sampling rate required is twice the bandwidth:

2B = 2×22kHz = 44000samples per second

[3]

(ii) For a sine wave taking values between +V and −V the RMS value is
V/
√

2, ie the signal power is V 2/2. With an n-bit quantiser, we have 2n levels
and the stepsize is therefore
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∆ =
2V
2n

The quantisation noise power is

∆2

12
=

V 2

3
2−n

Therefore the SNR is given by

V 2/2
V 2/(3×2n)

= 3×22n−1 ≡ 1.76+6.02ndB

(see lecture notes).
Therefore, we need 1.76+6.02n≥ 48 or

n≥ (48−1.76)/6.02, =⇒ n≥ 7.68

Since n is an integer, we require a minimum of 8 bits per sample. [5]

(iii) We have 44000 samples/sec and each sample is represented by 8 bits.
Therefore the bit rate of the digital stream is 8bit/sec = 352kbits/sec. Thus
the minimum capacity of the communication link to support streaming is

352kbit/sec

[5]

Part (a) was reasonably well done but a disappointing number of candidates could
not evaluate the DFT even for this very simple sequence. One surprisingly common
mistake was to evaluate Xi with i from 1 to 4 rather than from 0 to 3. There were, however,
many perfect answers to Part (a).

Part (b) was similarly well done. One common mistake was to use 20 to multiply
the log in the dB expression (when dealing with powers). There were also a large number
of algebraic errors (though not many marks were lost for this).

6 (a) (i)

s1(t)= 10cos(2π fct)+m(t))cos(2π fct)= 10cos(2π fct)+
m(t)

2

(
e j2π fct + e− j2π fct

)
so that

Version: jl/gv (TURN OVER for continuation of SOLUTION 6



12

S1( f ) = 10π [δ ( f − fc)+δ ( f + fc)]+
1
2
[M( f − fc)+M( f + fc)]

And if s2(t) = m(t)cos(2π fct) we have

S2( f ) =
1
2
[M( f − fc)+M( f + fc)]

since if we shift in the frequency domain we multiply by a complex
exponential in the time domain. [4]

(ii) s1(t) is amplitude modulation (AM) and s2(t) is double side-band
suppressed carrier. s)2(t) has smaller power (as we do not transmit the carrier)
but needs more complex circuitry at the receiver to demodulate. s1(t) can be
demodulated using a simple envelope detector. [4]

(b) (i) Given the definition of X(t) above, the PAM waveform will look
like

t
0

1√
T

T 2T 3T 4T 5T 6T

[4]

(ii) Know that the FT of a pulse width T , height 1/
√

T centred on the origin
is

√
T sinc

ωT
2
≡
√

T sinc(π f T )

If we shift this pulse to the left by T/2 we get p(t), which means that
its FT is given by

e jπ f T√T sincπ f T

the magnitude of the spectrum(FT), P( f ), of p(t) is shown in figure 3:
[5]

(iii) As Xk ∈ {0,A}, and Yk = Xk +Nk, the optimal detector is

X̂k =

{
0 if Yk ≤ A/2
A if Yk > A/2
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Fig. 4

The probability of detection error, Pe, is therefore

Pe = P(Xk = 0)P(X̂k 6= 0|Xk = 0)+P(Xk = A)P(X̂k 6= A|Xk = A)

=
1
2

P(Yk > A/2|Xk = 0)+
1
2

P(Yk ≤ A/2|Xk = A)

=
1
2

P(Nk > A/2)+
1
2

P(Nk ≤−A/2)

=
1
2

P(Nk/σ >
A

2σ
)+

1
2

P(Nk/σ ≤− A
2σ

)

=
1
2

Q
(

A
2σ

)
+

1
2

Q
(

A
2σ

)
= Q

(
A

2σ

)

This was the least popular question on the whole paper – perhaps because it looked
long and was at the end of the paper! Those who did attempt it generally did reasonably
well. Part (a) threw up a surprising number of candidates who could not find the spectra
of the simple functions s1 and s2, though most had learned what these signals were and
what were their advantages and disadvantages. Part (b) was done well with (ii) being the
part that most marks were lost on. Though most people knew the spectrum was a sinc
function, most did not realise that as we had a shifted pulse, the sinc was multipled by a
complex exponential.

END OF SOLUTIONS
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