Answers to IB Mathematical Methods, 2014

Section A

1. Divergence and Gauss
(a) πI_{0}
(b) $\pi I_{0} \frac{R^{2}}{R^{2}+H^{2}}$
(c) $\pi I_{0} \frac{R^{2}}{R^{2}+H^{2}}($ same as (b))
2. Curl, div and grad
(a) 0
(b)(i) 0
(b)(ii) Γ
(c) $\nabla \times \underline{V}=\Gamma \delta(\underline{r})$
(d) $Q \delta(\underline{r})$
(e) $2 \pi \phi=-Q \ln r+\Gamma \theta$
(f) -
3. PDE separation of variables
(a) -
(b)

$$
\begin{gathered}
q_{x}=-\lambda_{x} \frac{\partial T}{\partial x}=A \beta \pi / L \sinh (\beta \pi x / L) \sin (\pi y / L) \\
q_{y}=-\lambda_{y} \frac{\partial T}{\partial y}=A \frac{\pi}{L} \sinh (\beta \pi x / L) \sin (\pi y / L)
\end{gathered}
$$

(c) 0
(d) -

Section B

4. Probability
(a) -
(b) 0.37591
(c)(i) 0.23975
(c)(ii) 0.27671
(c)(iii) -
5. Subspaces and Inversion
(a) its determinant must be non-zero (b),$- k \sqrt{5}$.
(c)(i) 2
(c)(ii)

$$
\mathbf{x}=\left[\begin{array}{l}
2 \\
1 \\
0
\end{array}\right]+\lambda\left[\begin{array}{c}
2 \\
-2 \\
3
\end{array}\right]
$$

(c)(iii)

$$
\mathbf{x}=\left[\begin{array}{c}
2-4 / 17 \\
1+4 / 17 \\
-6 / 17
\end{array}\right]
$$

The cost of this design is $2.1828 k$.
6. Eigenvectors and Eigenvalues
(a)

$$
\mathbf{A} \mathbf{x}=\lambda \mathbf{x}
$$

(b)(i) It must be an eigenvalue of \mathbf{A}_{22}.
(b)(ii) It must be an eigenvalue of \mathbf{A}_{11}.

Eigenvalues of \mathbf{A} must be eigenvalues of either \mathbf{A}_{11} or \mathbf{A}_{22}. Any eigenvector unique to \mathbf{A}_{11} must have $\mathbf{x}_{2}=\mathbf{0}$.
(c)(i) 3 and 1 .
(c)(ii)

$$
\mathbf{x}=\frac{1}{\sqrt{2}}\left[\begin{array}{l}
1 \\
1 \\
0 \\
0
\end{array}\right]
$$

