
Version JL/GH/5

EGT1
ENGINEERING TRIPOS PART IB

Thursday 7 June 2018 2 to 4.10

Paper 6

INFORMATION ENGINEERING: SOLUTIONS

Answer not more than four questions.

Answer not more than two questions from each section.

All questions carry the same number of marks.

The approximate number of marks allocated to each part of a question is indicated
in the right margin.

Answers to questions in each section should be tied together and handed in
separately.

Write your candidate number not your name on the cover sheet.

STATIONERY REQUIREMENTS
Single-sided script paper, graph paper, semilog graph paper

SPECIAL REQUIREMENTS TO BE SUPPLIED FOR THIS EXAM
CUED approved calculator allowed
Engineering Data Book

10 minutes reading time is allowed for this paper at the start of
the exam.
You may not start to read the questions printed on the subsequent
pages of this question paper until instructed to do so.
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SECTION A

Answer not more than two questions from this section.

1 (a) Taking LT of both sides, using the formula for integration on the LT page in
databook, we see that ȳ

ū = G(s) = g
s . Need to assume that u(t) = 0 for t < 0. [3]

(b) A first order lag with time constant τ = 0.2s has a pole at 1/τ , and is therefore of
the form a/(1+ τs). The steady-state gain is obtained by setting s to zero and equals a;
so we must have a = 1. Conclusion: the transfer function of this sensor is

T (s) =
1

1+0.2s

[3]

(c) A block diagram of the proposed control scheme is shown in Fig. 1 [2]

Σ K(s) = kp G(s) = g
s

+r̄(s) ȳ(s)

T(s)

−

Fig. 1

(d) Due to the presence of an integral action in the loop, if the system stabilizes, then
the steady-state error must be zero (indeed, if there were some residual steady-state error
left, it would grow linearly through the integrator, contradicting (internal) stability of the
loop). [3]

(e) Bode diagrams for g = 1 and g = 100 are given in Figure 2. For g = 1, the phase
margin is very large, so the step response is expected to be non-oscillatory. For g = 100,
the phase margin is small, indicative of a fairly poor damping of the step response, which
will be transiently oscillatory. [8]

(f) As g increases, the gain curve shifts upwards, while the phase remains unaffected.
Thus, increasing g decreases the phase margin, such that the worst case is obtained for
g = 100. We can therefore look at the Bode diagram for g = 100, and check the gain (call
it α) at the frequency where the phase is equal to −180+ 20 = −160◦. kp will need to
be no larger than 1/α to make sure the phase margin, in this worst case, remains above
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20◦. Reading α off the previous Bode diagram, we have α ≈ 2.4, and so we must have
kp < 0.42. [6]

2 (a) First, it cannot be G3(s). Indeed, the phase of G3(s) for large ω goes to −π ,
not −3π/2, whereas the Nyquist diagram provided approaches 0 for large ω from the
top. While G1(s) has the right asymptotic phase, it has real poles only and thus cannot
show any “bump” in modulus as a function of ω , whereas the Nyquist diagram provided
clearly “moves away from the origin” past ω = 1.8 rad/s. So it has to be G2(s). Further
sanity check: the natural frequency of the second order term in the denominator of G2(s)
is
√

9 = 3 rad/s, so we expect the phase to have dropped by a further 90◦ at ω = 3 rad/s
below the initial −90◦ phase lag imposed by the 1/s factor; this is indeed what we see, as
the point labelled ω = 3 rad/s lies on the real axis at a phase of −180◦. [5]

Page 3 of 16 BAD PAGEBREAK



Version JL/GH/5

(b) The exact answer is 1.35; students will probably have approximated it as |G( jωc)|=
1/0.75 = 1.333, which is acceptable. [4]

(c) The relevant closed loop transfer function is

kpG(s)
1+ kpG(s)

.

For ω = 3 rad/s, we get the closed-loop gain as the ratio of: the distance of the Nyquist
curve to the origin (|kpG(3 j)| term) to the distance of the Nyquist curve to the −1
point (the |1+ kpG(3 j)| = |kpG(3 j)− (−1)| term). The exact value is (1.2/1.35)/(1−
1.2/1.35) = 1.2/0.15 = 8; students will probably have said

1.2×0.75
1−1.2×0.75

= 9

which is acceptable. The phase lag can be computed similarly (easy here because both
the numerator and denominator happen to be real for this particular ω = 3 rad/s), and
is −180◦. Conclusion: y(t) = 8cos(3t − π) = −8cos(3t). Thus, there is quite a bit of
resonance at this frequency. (Students will probably have said−9cos(3t) if their estimate
of the gain margin was 1/0.75 = 4/3.) [6]

(d) Somewhat unusually, such resonance could not have been predicted by considering
the phase margin. Indeed, the phase margin is almost 90◦ here (even after multiplying by
kp = 1.2, the only point that intersects the circle of unit radius centered at the origin is on
the “vertical lower branch” for small ω), and this point would need to rotated by almost
90◦ clockwise to hit the −1 point on the real axis. This looked very safe! [4]

(e) We use the principle of superposition, as it applies to this linear system, to assemble
the output from:

• the output for r(t) = 1 and d(t) = 0; this is y(t) = 1 too, because the presence of
an integral term 1/s ensures a unit steady-state gain for constant inputs;

• the output due to r(t) = 0 and d(t) = 0.2cos(1.8t). Using the Nyquist diagram to
estimate the gain and phase of 1+kpG, we get a closed loop frequency response of
0.98∠+0.45.

Conclusion: y(t) = 1+0.2cos(1.8t +0.45). [6]
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3 (a) By taking the Laplace transform of both equations and eliminating f̄ (s), we
get

r̄(s) =
α

s2 +(α2−1)
ū(s)

so
G(s) =

α

s2 +(α2−1)

For α < 1, the population dynamics are unstable, as in this case there is a (repeated) real
pole at

√
1−α2 > 0. For α ≥ 1, there are two conjugate poles on the imaginary axis,

at ± jα – hence we have marginal stability. In this case, α determines the resonance
frequency. [5]

(b) (i) The closed loop TF is

G(s)K(s)
1+G(s)K(s)

=
α(kp + kds)

s2 +αkds+(α2−1+αkp)

=
2(kp + kds)

s2 +2kds+(3+2kp)

[4]

(ii) For kd = 0, the denominator remains of the form s2+(3+2kp), which still has
imaginary conjugate poles, and therefore marginal stability. Thus, a proportional
controller cannot stabilize the population dynamics. [4]

(iii) For K(s) = kp + s, we have a closed loop TF given by

2(kp + s)
s2 +2s+(3+2kp)

which has moved the two poles away from the imaginary axis into the stable LHP.
The steady state error is given by

E =
3

3+2kp

which decreases as kp increases. However, the damping ratio (found by identifying
the denominator in the closed loop TF with the canonical form for a second order
system) is

ζ =
1√

3+2kp

For this to not go below 0.5 = 1/
√

4, we must have 3+2kp < 4, resulting in a least
achievable steady state error of E = 3/4 = 75%, which is fairly poor. [6]
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(iv) The transfer function from the output disturbance to the output is given by the
sensitivity function

S(s) =
1

1+K(s)G(s)
=

s2 +3
s2 +20s+5

We want the range of ωd for which |S( jωd)|< 0.5 (see Fig. 3). Taking the squared
modulus instead, and letting y≡ ω2

d , we have the condition

(3− y)2

(5− y)2 +400y2 <
1
4

This is a simple quadratic inequality in y, which yields the following interval (don’t
forget to transform the obtained range of y into a range for ωd!): 0.163 ≤ ωd ≤
11.75. [6]
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SECTION B

Answer not more than two questions from this section.

4 (a) The FT and IFT are given by

F(ω) =
∫ +∞

−∞

f (x)e− jωxdx f (x) =
1

2π

∫ +∞

−∞

F(ω)e jωxdω

Therefore:

f (x−a) =
1

2π

∫ +∞

−∞

F(ω)e jω(x−a)dω

=
1

2π

∫ +∞

−∞

{F(ω)e− jωa}e jωxdω

Showing that f (x−a) has FT {F(ω)e− jωa}.
Similarly, differentiating the IFT expression wrt x gives

d f (x)
dx

=
1

2π

∫ +∞

−∞

F(ω)
de jωx

dx
dω

=
1

2π

∫ +∞

−∞

{ jωF(ω)}e jωxdω

so that d f (x)
dx has FT { jωF(ω)}. [4]

(b) f (x) takes the following form:

x
-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

f(
x)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
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FT of this f (x) needs to be found by direct integration:

F(ω) =
∫ +1

−1
(1− x2)e− jωxdx =

∫ +1

−1
e− jωxdx−

∫ +1

−1
x2e− jωxdx

Do the first integral:

∫ +1

−1
e− jωxdx =

[
e− jωx

− jω

]+1

−1
=

e jω − e− jω

jω
= 2 sincω

Second integral is done via intergration by parts:

∫ +1

−1
x2e− jωxdx =

[
x2e− jωx

− jω

]+1

−1

+
2
jω

∫ +1

−1
xe− jωxdx

= 2 sincω +
2
jω

∫ +1

−1
xe− jωxdx

and ∫ +1

−1
xe− jωxdx =

[
xe− jωx

− jω

]+1

−1
+

1
jω

∫ +1

−1
e− jωxdx

=
e jω + e− jω

− jω
+

2 sincω

jω

=
2cosω

− jω
+

2 sincω

jω

Therefore∫ +1

−1
(1− x2)e− jωxdx = 2 sincω−2 sincω +

2
jω

[
2cosω

jω
− 2 sincω

jω

]
=

4
ω2 [ sincω− cosω]

Therefore α = 1, β =−1 p(ω) = 4/ω2, or other forms where the constants change (e.g.
α = 4, β =−4 p(ω) = 1/ω2 etc) [10]
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(c) The function g(x) is sketched below:

x
-3 -2 -1 0 1 2 3

g(
x)
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From this sketch we can see that we can write g(x) as

g(x) = f (x−1)− f (x+1)

Therefore, from the shift rule in part (a) we know that G(ω) is given by

G(ω) = F(ω)e− jω −F(ω)e jω

= −2 jF(ω)sinω

[5]

(d) The function k(x) is sketched below:

x
-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

k(
x)

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Note that k(x) = d f (x)
dx , so by part (b) we know that

K(ω) = jωF(ω) =
4 j
ω

[ sincω− cosω]

Now do this by direct integration (using the results of (b)) :

K(ω) = −2
∫ +1

−1
xe− jωxdx

=
4cosω

jω
− 4 sincω

jω

=
4 j
ω

[ sincω− cosω]

Thus we see, as expected, that the two results are equal. [6]
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5 (a) We know that if we are to have perfect reconstruction of the signal from its
samples, we need to sample at greater than or equal to twice the highest frequency in
the signal, ie 2 fB. We also know that the spectrum of a sampled signal is the original
spectrum repeated every interval of the sampling frequency and scaled by 1/T :

Fs(ω) =
1
T

∞

∑
n=−∞

F(ω−nω0)

Therefore, to extract the original spectrum (in the absence of aliasing) from this sampled
spectrum, we need to filter multiply the above with a top hat function:

Hr(ω) =

T, −2π fB < ω <+2π fB

0 otherwise

Multiplying in the frequency domain implies convolving in the time domain – so
we therefore convolve our original sampled signal with the spectrum of the top hat
function (and we need a factor of 2π). Therefore, our original signal is obtained by
convolving/interpolating the sampled signal with a sinc function as given here:

f (t) =
∞

∑
−∞

f (nT )sinc
[

π

T
(t−nT )

]
Therefore, we need to sample at the Nyquist rate (T ≤ 1/(2 fB)) and our function g(t) is
then given by

g(t) = sinc
π

T
t

[5]

(b) The formula for the DFT of a set of samples {xn} n = 0,1,2,3, is (with N = 4)

Xk =
N−1

∑
n=0

xne− jkn 2π
N 0≤ k ≤ N−1

Therefore, we compute the DFT coefficients as follows (note that T is not needed for
obtaining the samples but will be needed in finding the frequencies that the samples
correspond to):

k = 0 : X0 =
3

∑
n=0

xne− j0n 2π
4 = {−1+0+1+0}= 0

k= 1 : X1 =
3

∑
n=0

xne− j1n 2π
4 = {−1+0e− jπ/2+1e− jπ +0e− j3π/2}= {−1+0−1+0}=−2
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k= 2 : X2 =
3

∑
n=0

xne− j2n 2π
4 = {−1+0e− jπ +1e− j2π +0e− j3π}= {−1+0+1+0}= 0

k= 3 : X3 =
3

∑
n=0

xne− j3n 2π
4 = {−1+0e− j3π/2+1e− j3π +0e− j9π/2}= {−1+0−1+0}=−2

Therefore we have {Xn}= [0,−2,0,−2]. [4]

(c) If T = 2 then the frequency of the kth Fourier component is given by k
NT = k

8 .
Since we have a non-zero frequency component at k = 1, this is f = 1/8 or ω = π/4
(other component is just in the conjugate position). This would fit in with our signal
taking the form

−cos
π

4
t

..and we see that the components of this signal at T = [0,2,4,6] are indeed [−1,0,1,0]. [4]

(d) (i) Amplitude Modulation (AM) is a form of analogue modulation in which
information x(t) modulates the amplitude of the carrier wave. If the carrier wave is
cos(2π fct) then the transmitted AM signal is

sAM(t) = [a0 + x(t)]cos(2π fct)

a0 is a positive constant chosen so that maxt |x(t)| < a0. The information signal is
extracted from the information signal via envelope detection.
Frequency Modulation (FM) is a form of analogue modulation in which the
information signal, x(t), modulates the instantaneous frequency, f (t), of the carrier
wave, ie f (t) is varied linearly with x(t):

f (t) = fc + k f x(t)

which gives an instantaneous phase, θ(t) of

θ(t) = 2π fct +2πk f

∫ t

0
x(u)du

The modulated FM signal is therefore

sFM(t) = Ac cosθ(t) = Ac cos(2π fct +2πk f

∫ t

0
x(u)du)
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FM signals are a little harder to demodulate – need a differentiator and an envelope
detector. [3]

(ii) Spectrum of AM signal is

SAM( f ) = FT (sAM(t)) = FT

[
[a0 + x(t)]

e j2π fct + e− j2π fct

2

]

=
a0
2
[δ ( f − fc)+δ ( f + fc)]+

1
2
[X( f − fc)+X( f + fc)]

where X is the FT of x. The bandwidth of an AM signal can be derived from the
above form of the spectrum. If x(t) is a baseband signal with (one-sided) bandwidth
W , the AM passband signal will have bandwidth 2W . The power of the AM signal
is

PAM =
a2

0
2
+

Px
2

where Px is the power of x(t). This is derived by forming limT→∞
1
T
∫ T

0 s2
AM(t)dt

Spectrum of FM signal is more complicated (but has been done in the examples
sheets!) and is

SFM( f ) =
Ac
2

+∞

∑
n=−∞

Jn(β )[δ ( f − fc−n fx)+δ ( f + fc +n fx)]

where Jn is an nth order Bessel function of the first kind. The bandwidth of an FM
signal is also rather complicated: we usually use Carson’s Rule to give an effective
bandwidth of

BFM ≈ 2∆ f +2W

where W is the bandwidth of x(t) and ∆ f is the frequency deviation around fc.
Since an FM signal has constant carrier amplitude (only phase is changed), it will
therefore have constant power dependent on this amplitude. [6]

(iii) For Analogue Modulation with information signal of bandwidth W we have:

• AM modulated signal: Bandwidth 2W , high power, simple receiver using
envelope detection.

• FM modulate signal: constant carrier amplitude and therefore constant power
Bandwidth depends on both β = ∆ f/ fx and W and can be significantly greater
than 2W. FM has better robustness to noise than AM – since the information is
“hidden” in the phase.

[3]
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6 (a) (i) PAM is a digital baseband modulation technique which has two basic
components: i) a mapping from bits to real/complex numbers
ii) a unit-energy baseband waveform denoted p(t), called the pulse shape.

The basis of PAM is to modulate a baseband signal using this pulse shape, ie, if Xk
are the values our bits are mapped to, then the modulated signal is given by

xb(t) = ∑
k

Xk p(t− kT )

..ie at each time step we shift the pulse and modulate its amplitude. [4]

(ii) For the 4-ary constellation, [−3A,−A,A,3A], we have :

[00] =−3A, [01] =−A, [10] = +A, [11] = +3A

Therefore our 12 digit sequence is split into a 6 element sequence as follows:

[−3A,−3A,A,A,−A,A]

Similarly, the 8-ary constellation maps via

[000] =−7A, [001] =−5A, [010] =−3A, [011] =−A

[100] = A, [101] = +3A, [110] = +5A, [111] = +7A

Therefore our 12 digit sequence is split into a 4 element sequence as follows:

[−7A,−3A,A,5A]

[4]

(iii) The pulse shape p(t) should be chosen to satisfy the following important
objectives:
a) We want p(t) to decay quickly in time, i.e., the effect of symbol Xk should not
start much before t = kT or last much beyond t = (k+1)T .
b) We want p(t) to be approximately band-limited. For a fixed sequence of symbols
{Xk}, the spectrum of xb(t) is

Xb( f ) = FT

[
∑
k

Xk p(t− kT )

]
= P( f )∑

k
Xke− j2π f kT

by the shift theorem. Therefore the bandwidth of our modulated baseband signal is
the same as that of the pulse.
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c) The retrieval of the information sequence from the noisy received waveform
xb(t)+ n(t) should be simple and relatively reliable. In the absence of noise, the
symbols {Xk} should be recovered perfectly at the receiver. For this to be the case
it is helpful for the pulse to have the orthonormal shifts property, ie∫ +∞

−∞

p(t− kT )p(t−mT )dt = 1 i f k = m, 0 i f k 6= m

Two common unit energy pulse shapes that satisfy the above properties are the
rectangular pulse

p(t) =

{
1√
T

for t ∈ (0,T ]

0 otherwise

and the sinc pulse: p(t) = 1√
T

sinc
(

πt
T
)
.

In practice a pulse shape having a raised cosine spectrum can also be used rather
than the rectangular pulse. [4]

(b) (i) In PSK, the magnitude of the symbols {Xk}
is constant, with the information being in the phase of the symbol, as shown below

We will take [p1, p2, p3, p4] to have phases of [π/4,−π/4,−3π/4,3π/4] for
QSPK. For 8-PSK we take [p1, p2, p3, p4, p5, p6, p7, p8] to have phases of
[0,−π/4,−π/2,−3π/4,π,3π/4,π/2,π/4].
Therefore we have for QPSK:

p1 = [00], p2 = [01], p3 = [10], p4 = [11]

and for 8PSK

p1 = [000], p2 = [001], p3 = [010], p4 = [011], [p5 = [100], p6 = [101], p7 = [110], p8 = [111]

Therefore, for the 12 digit sequence in part(a)(ii) our mapping is:

QPSK : [Ae jπ/4,Ae jπ/4,Ae− j3π/4,Ae− j3π/4,Ae− jπ/4,Ae− j3π/4]

8−PSK : [A,Ae− jπ/2,Ae jπ ,Ae jπ/2]
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[5]

(ii) The decision regions for the two schemes are shown below

[3]

(iii) Assume all constellation symbols are equally likely. If our observation is Y
and our actual symbol is X , with noise N, then

Y = X +N

where X ,Y,N are all complex numbers. If p1 is the true mapping, we want
p(X̂ = p1|X = p1), which occurs if Y lies in the region shown in part(b)(ii). If
X = [Xr,X i] etc, then N = (Y − X) and we assume that each of the real and
imaginary components are distributed as a gaussian (µ = 0,σ2), and that they are
independent.

p(X̂ = p1|X = p1) = p(Y r > 0 and Y i > 0|X = p1)

since we assign p1 if we observe Y to be in the first quadrant. Subsituting for
Y = X +N and using the fact that p1 corresponds to Ae jπ/4 = A/

√
2+ iA/

√
2:

p(X̂ = p1|X = p1) = p(Nr >− A√
2

and Ni >− A√
2
)

Since Nr and Ni are independent we can write the above as

p(X̂ = p1|X = p1) =

[
Φ

(
A

σ
√

2

)]2

[5]

END OF PAPER
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