

ENGINEERING TRIPOS PART IA 1997

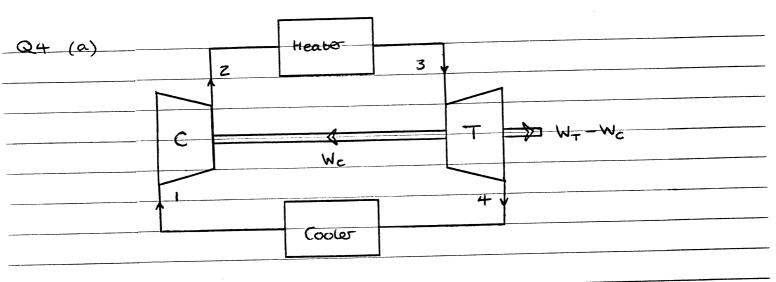
PAPER 1: MECHANICAL ENGINEERING

SOLUTIONS

Q1 (a) Tds = dn - Vdp
= cpclT - v ap as ah = cpaT
$\frac{ds}{T} = \frac{QT}{T} - \frac{V}{T} dP$ $PV = RT \Rightarrow \frac{V}{T} = \frac{R}{P}$ $\therefore ds = \frac{CP}{T} - \frac{R}{P} \frac{dP}{P} \qquad \text{if in quasi-equilibrium}$
$\frac{ds = CP \frac{dT}{T} - R \frac{dP}{P} = \frac{C}{I} \frac{in quasi-equilibrium}{P}$
$5_2 - S_1 = C_P \ln \frac{T_2}{T_1} - R \ln \frac{P_2}{P_1}$
This is also valid for an ineversible process because it is an
equation in properties. The change in properties is independent
of the path taken between given states.
(b) (i) Continuity: $C_A V_A A_A = C_B V_B A_B \Rightarrow \frac{A_A}{A_B} = \frac{C_B}{C_A} \cdot \frac{V_B}{V_A}$
As T is constant $p = eRT \Rightarrow e = eRT$
$\frac{A_A}{A_B} = \frac{P_B}{P_A} \cdot \frac{V_B}{V_A} = \frac{1.8 \times 300}{1.5 \times 400} = \frac{0.90}{}$
(ii) SFEE: $Q = W_X + \left(h_A h_A\right) + \frac{1}{2} \left(v_B^2 - v_A\right)^2 + g(Z_B Z_A)$ no shafts T const. horizontal pipe
$Q = \frac{1}{2}(V_3^2 - V_4^2) = \frac{1}{2}(300^2 - 400^2) = -35 \text{ kT/kg}$

Q1 (cont)	
(iii) $\Delta S = S_8 - S_A = C_P \ln \frac{78}{10} - R \ln \frac{98}{9A} = -287 \ln \frac{1.8}{1.5}$	
Te=TA = - 52.3 3/	<u>Kg K</u>
To establish direction of flow use the 2nd Law $\Delta S > 1$) <u>d@</u>
As flow is isothermal $\int dQ = Q$	
If flow is from A -> B $\triangle s > Q$	
$\frac{Q}{T} = \frac{-35 \times 10^3}{400} = -87.5 \text{ J/mg/K}$	
From (iii) Δs = - 52.3 7 /kg K	
Hence the inequality is satisfied > flow is from A	to B
Completely spurious arguments:	
Flow is from B to A as pressure decreases that way	1
2	

QZ (a) Pressure and temporature are not independent in the	
Saturation region, so in this region measurements of	
p and T are not sufficient to establish the themo-	
dynamic state.	
(1) For the throttle the SFEE gives	
$Q = y_x + (h_2 - h_1) + \frac{1}{2}(y_2^2 + y_2^2) + g(z_2 - z_2^2)$	
adiabatic no shapts negligible horizontal	
$\vdots h_2 = h_1$	
From Table 9 hz = 2683 KJ/kg	
: h, = 2683 KI/kg	
$(ii) h_1 = x h_2 + (1-x) h_2$	
$= h_1 - h_f = 2683 - 762.6$	
ng - nf 2776.2 - 762.6	
= 0.954	and the property of the contract of the contra
The use of the h-s chart is also acceptable.	
Wile out of	
(b) (i) The basic four stroke cycle is the same for both p	etrol
(b) (i) The basic four stroke cycle is the sure of the same and diesel engines, the four parts being:	
Induction ("suck")	
Compression (" squeeze") — Ignition occurs	
Power ("barg")	
Exhaust ("blow")	
(ii) In a petrol engine the air and first are premixe	
before being drawn into the cylinder during the	
induction stroke. Combustion is initiated by a	
spark at or near the end of the compression stro	ke,
followed by flame propagation. Hence the heat	
addition is approximately "at constant volume	\\\
the Otto cycle.	


-3-

QZ (cont)
In a diesel engine fuel is sprayed into the cylinder towards
the end of the compression stroke. Combustion occurs
spontaneously throughout the cylinder when the presure
temperature is high enough. Hence heat addition is approx-
imately "at constant pressure" - the diesel cycle.
(iii) In a petrol engine the air-fiel ratio is kept constant
and the mass of the charge drawn into the cylinder
is regulated to control the power.
In a diesel engine the mass of air drawn into the cylinder
is kept constant and the mass of final sprayed in is varied
to control the power.
(iv) In a petrol engine the compression ratio is limited to a
maximum of ~10 by the need to avoid "knock" (spontaneous
detonation). This limits the size of cylinders and the
themal efficiency of the engine (q increases with CR).
In a diesel engine the compression ratio is limited only by
mechanical considerations. CR has to be higher than for
petrol engines to achieve spontaneous combustion and to
give comparable (or bettor) themal efficiencies.

Q3 (a) dq - dw = du
$dw = \rho dv$
:. dq = du + pdv / O for a constant pressure process
dq = pav = av $dq = du + pdv$ $dh = du + pdv + vap$ $dh = du + pdv + vap$
Herce da = dh
$Q = \Delta h$
(b) (i) Process I is reversible and isentropic \Rightarrow adiabatic \Rightarrow $Q_{\overline{1}} = O$
Process II is reversible and isothermal $\Rightarrow Q = T\Delta S$
From Table 8 Tz = 179.9°C = 453.1 K
S, = 6.583 KT/Kg K
From h-s chart S3 (for T=180°C, p = 0.01 MPa)
= 8.820 KJ/Kg K
$Q_{\overline{11}} = T_2 (s_3 - s_2) = 453 - 1 \times (8.870 - 6.583)$
= 1.013 MT/kg
Process $\overline{\Pi}$ is constant pressure in from (a) $Q = \Delta H$
From h-s chart h3 (for T≈ 180°C, p = 0.01 MPa)
= 2840 kJ/kg
h, (for p = 0.01 MPa, s = 6.583 KJ/kg K)
= 2085 KJ/Kg
$Q_{\overline{\parallel}} = h_1 - h_3 = 7085 - 7840 = -755 \text{ kg}$
(ii) Thermal efficiency = net work = heat in - heat out
(ii) Themal efficiency - real work heat in heat in
= 1013 - 755
1013
= 25.5 /6

-5-

(iii)				
<u> </u>	\ Z			
179.9		Ī	/	* from Tables
) 55	twation		+ from chart
T/°c	/54	tire		Thorn Gross
.,, с	I Y			
45.8*				
13.6			5 / KJ/Kg	3 K
	6.583*	8.151*	8.820+	
	-			
				,
				-
				-

(b)
$$T_{23} = \left(\frac{P_2}{P_1}\right)^{\frac{1}{2}-1} T_1 = 6^{\frac{0.47}{1.47}} \times 373 = 622.4 \text{ K}$$

$$\frac{1}{100} = \frac{T_{25} - T_{1}}{T_{2} - T_{1}} \Rightarrow T_{2} = T_{1} + \frac{1}{100} \left(T_{25} - T_{1} \right) \\
= 373 + \frac{1}{0.9} \times (622.4 - 373)$$

$$= 650.1 \text{ KC}$$

(c)
$$T_{45} = \left(\frac{P_4}{P_3}\right)^{\frac{5-1}{5}} T_3 = \left(\frac{1}{6}\right)^{\frac{0.44}{1.44}} \times 1473 = 882.8 \text{ K}$$

$$\frac{1}{17} = \frac{T_3 - T_4}{T_3 - T_{45}} \Rightarrow T_4 = T_3 - \frac{1}{17} \left(\frac{T_3 - T_{45}}{T_3 - T_{45}} \right) = 1473 - 0.92 \times (1473 - 882.8)$$

$$W_T = C_P(T_3 - T_+) = 1.01 \times (1700 - 657) = 548 \text{ K}^3/\text{K}^2$$

(d)
$$\dot{W}_{net} = \dot{m}(W_T - W_C)$$

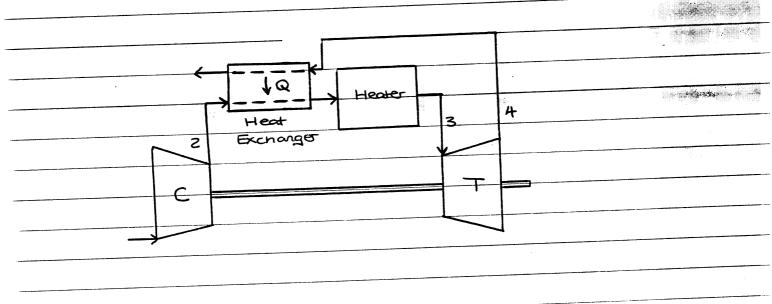
$$W_{net} = m(W_T - W_C)$$

 $\dot{m} = \frac{\dot{W}_{net}}{W_T - W_C} = \frac{50 \times 10^6}{(548 - 280) \times 10^3} = \frac{187 \text{ kg/s}}{}$

Q4	(cont)
----	--------

(f) As the exit temperature from the twooder (T4) is

higher than the exit temperature from the compressor


(T2) a heat exchanger can be used to transfer heat

from the twooder exhaust to the air before it enters

the heater. This reduces the amount of heat which

must be added in the heater (Qin), thus raising

the thermal efficiency of the cycle.

Q5 (a) Initial K.E. = 2×104×302 = 4.5 MJ

Momentum conserved during impact, i.e. $m_2 V_2 = m_1 V_1$

 $V_2 = \frac{10,000}{15,000} \times 30 = 20 \text{ m/s}$

New K.E. = 2×15×103×202 = 3MJ K.E. Lyst = 1.5MJ

(b) K.E. after import becomes work done against friction + energy in young

Let distance to 15th stop = >C

3x106 = 5000 x10 x 1.5 x + 2x250 x103 x2

125 x2 + 75 x - 3000 = 0

 $x = \frac{-75 \pm \sqrt{5625 + 1.5 \times 10^6}}{250} = 4.608 m$

Compressive force in spring = 250×103 × 4.668 N = 1.152 17N

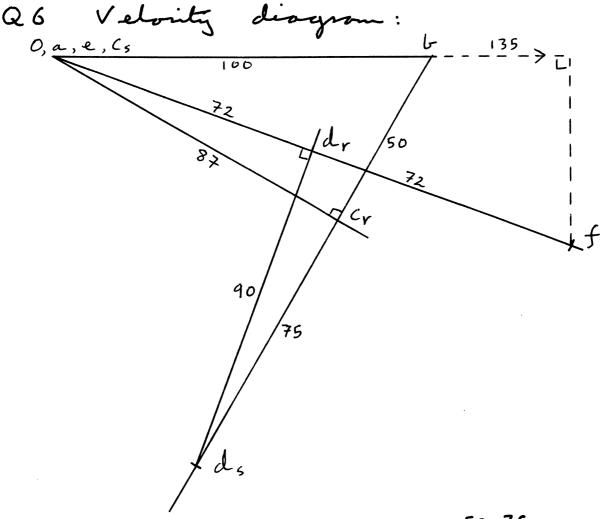
Every now in young becomes work done vs friction + everyy in upring at second stop.

Let esternin of young at 2nd stop = y $125 \times 10^{3} \times 2^{2} = 125 \times 10^{3} y^{2} + 500 \times 10 \times 1.5 (x + y)$

Q5 (cont)

$$125y^{2} + 75y + 75 \times 4.608 - 125 \times 4.608^{2} = 0$$

$$y = \frac{-75 \pm \sqrt{5625 + 4 \times 125 \times 2309}}{250} = 4.008 \text{ m}$$


Terrile force in spring = 250×103 × 4.008 N = 1,002 MN

Subsequent temile + comprenire forces will all be smaller.

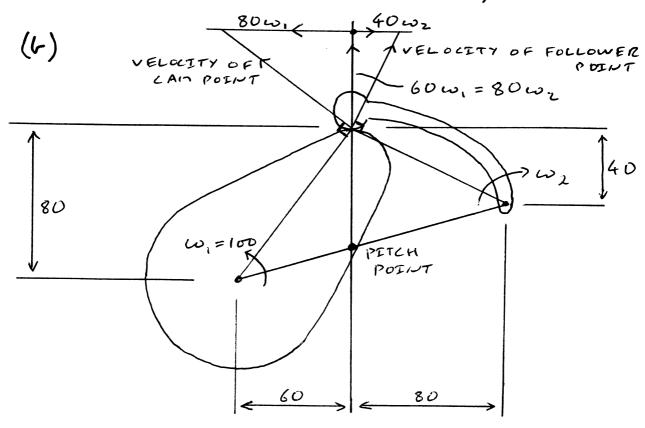
(c) Mase acceleration oraces just before first stop.

Total forme on combined mans = 1.152 × 106 + 5000 × 10 × 1.5 N = 1.227 17 N

A cealeration = $\frac{1.227 \times 106}{15 \times 103} = \frac{81.8 \, \text{m/s}^2}{}$

(a) Angular velocity of $BD = \frac{50+75}{100} = 1.25 \text{ rad/5}$)
Stiding velocity at C = 87 mm/5

(b) Angular velocity of $EF = \frac{144}{60} = \frac{2.40 \text{ rad/s}}{60}$ Stilling velocity at $D = \frac{90 \text{ mm/s}}{100 \text{ mm/s}}$


(c) Horizontal velocity of F = 135 mm/s13y Virtual Work, $5Q = 20 \times 0.135$ Q = 0.540 Nm

Q7 (a) The pitch point is where the common normal through the point of contact interests with the line between the centres of votation.

There is no diding if it is winded with the proint of contact.

The vatio of the angular valorities of the lominas stays constant if the pitch point does not move.

The luminous of the pitch proint lies between the two centres of whation.

either: $60 \omega_1 = 80 \omega_2$ $\therefore \omega_2 = \frac{60}{80} \omega_1 = \frac{75 \text{ rad } 15}{12}$

Q7 (cont.)

or: Pitch point cuts line between centres in the vatio 3:4

:. wz = - 3/4 x 100 = 75 ml (5)

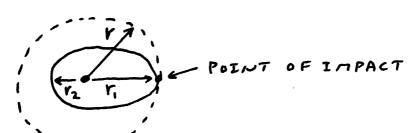
5 liding velocity = 80 w, + 40 wz mm/s

= 11 m/s

(c) Relative angular velocity of Mael is stained by dividing the Midwing velocity by the Meel radius, i.e. 1100 rad (5)

A brothete angular velocity com be found by considering horizontal velocities of Meel centre + contact point:

 $\frac{\sqrt{2\omega_3}}{80\omega_1 = 8000 \text{ mm/s}}$


.. w3 = 3750+8000 = 1175 ml/5)

As eseparted, have two values differ by wz.

Q8 (a) At radius V, gravitational force on ratellite is:

For a circular orbit, this = centrifugal force i.e. $\frac{mV^2}{V} = \frac{m17.6}{V^2}$

And pairod = $\frac{2\pi r}{V} = 2\pi r \sqrt{\frac{r}{Mq}}$

Point of impact = Parigee of new orbit

Also,
$$V_1 = \frac{3V}{4} = \frac{3}{4} \sqrt{\frac{mq}{V_1}}$$
 (1)

17 ethor 1:

Conservation of moment of momentum: $m'V_1V_1 = m'V_2V_2 \Longrightarrow V_2 = \frac{r_i}{r_i}V_i$ (2)

Conservation of energy:

$$\frac{1}{2}m'(V_2^2-V_1^2) = \int_{V_1}^{V_2} \frac{m'179}{V^2} dV = \frac{m'179}{V_2} - \frac{m'179}{V_1}$$

i.e.
$$\frac{1}{2}(v_2^2-v_1^2) = \frac{175}{v_2} - \frac{175}{v_1}$$
 (3)

Q8 (cont) (ordining equations (1) -(3),
$$\frac{1}{2}\left(\left(\frac{r_{1}}{r_{2}}\right)^{2}-1\right)\frac{q}{16}\frac{176}{r_{1}}=\frac{179}{r_{2}}-\frac{776}{r_{1}}$$

$$\frac{q}{32}\left(\left(\frac{r_{1}}{r_{2}}\right)^{2}-1\right)=\frac{r_{1}}{r_{2}}-1$$

i.e.

$$9 \times^2 - 32 \times + 23 = 0$$

There $x = r_2$
 $x = \frac{32 \pm \sqrt{32^2 - 4 \times 9 \times 23}}{18} = \frac{32 \pm 14}{18}$
 $= \frac{23}{9} (or 1)$

So $r_1 = r$ and $r_2 = \frac{9r}{23} = 0.391 r$

Mathod 2: using data book formulae $h = V_i r_i = \frac{3r_i}{4} \sqrt{\frac{174}{r_i}}$

$$L = \frac{h^2}{417} = \frac{9v_1}{16}$$

At Aprogree, r=r, and $\theta=TT$ $\therefore l/r = \frac{9}{16} = 1-e \implies e = \frac{7}{16}$ Then $\frac{r_2}{r} = \frac{1-e}{1+e} = \frac{9}{23}$ as before.

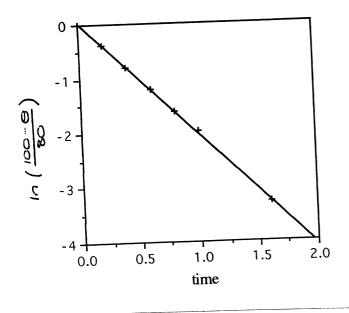
(C) O that time will decrease (despite veduction in velocity) since new other radius is always & V, and other time veduces as radius veduces.

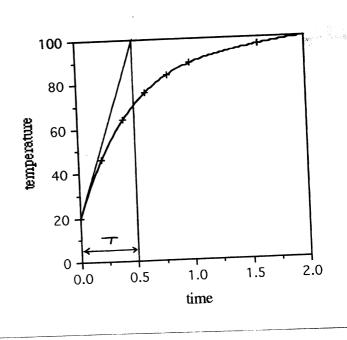
 $Q9(a) Td\theta + \theta = \phi$

By inspection PI $\Theta = \phi$

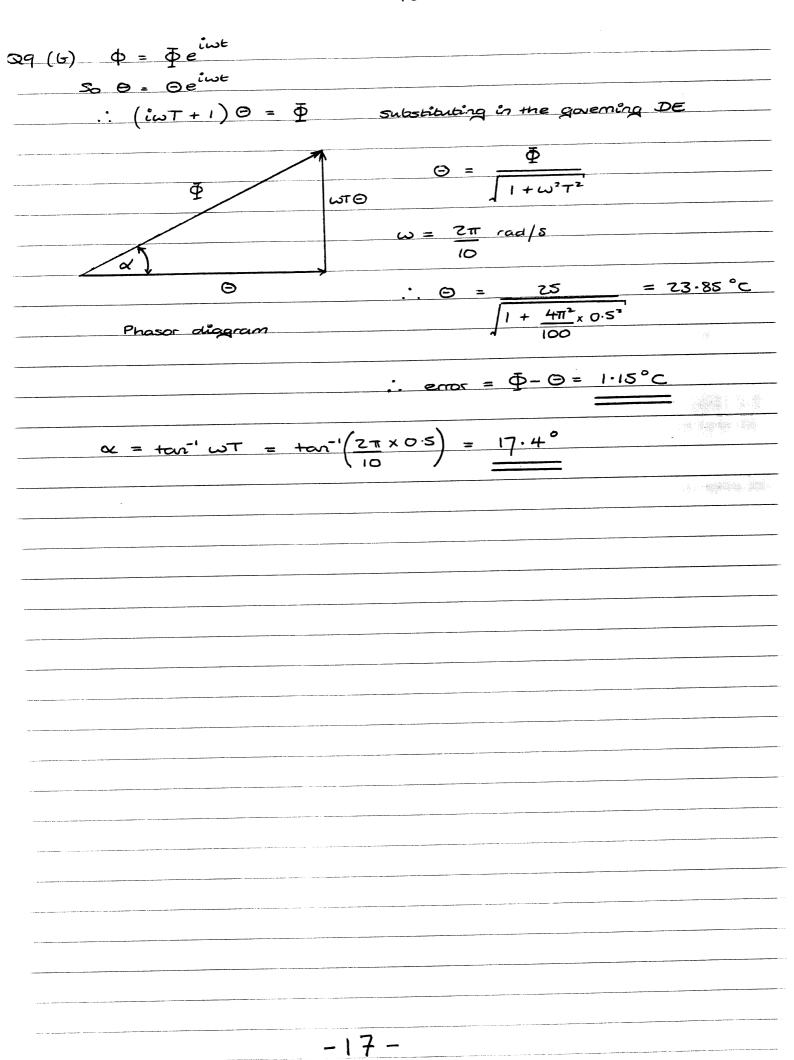
 $CF \Theta = Ae^{-t/\tau}$

GS 0 = 0 + Ae-t/T


BC $\Theta = \Theta_0$ at $t = 0 \Rightarrow A = \Theta_0 - \phi$


 $\therefore GS \Theta = \phi + (\Theta - \phi) e^{-t/\tau}$

la this case 0 = 100 - 80 e- 6/7


 $\frac{100-6}{80} = -t/T$

Plotting In (100-0) versus t for the data given does yield a straight-line relationship confirming the data is consistent with that for a first-order linear system.

The time constant can be estimated from the gradient of the log plot or from a plot of Θ vs t as shown. From either $T \approx 0.5s$

Q10 (a)
$$V_z = \frac{2R + Ldi}{dt} + V$$
at

i = $C dV$
at

i. $V_E = LC d^2V + RC dV + V$
ati ati ati

A = $LC B = RC$

[II) $A = 10 \times 250 \times 10^{-6} = 2.5 \times 10^{-3}$ for values given

 $B = 400 \times 250 \times 10^{-6} = 0.1$

Data book form is $\frac{1}{V_0} \frac{d^2V}{dt^2} + \frac{2C}{V_0} \frac{dV}{dt^2} + \frac{V}{V_0} = \frac{V_0}{V_0}$
 $\frac{1}{V_0} = \frac{1}{V_0} = \frac{400}{V_0} \Rightarrow \omega_0 = \frac{20 \text{ and/s}}{2}$

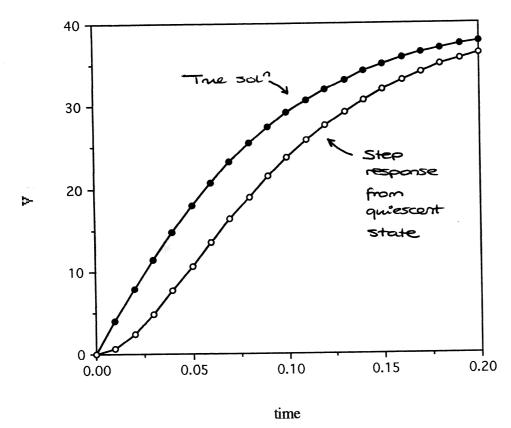
A $\frac{2C}{C} = B \Rightarrow C = \frac{B}{V_0} \omega_0 = \frac{0.1 \times 20}{2} = \frac{1}{V_0}$

As $C = 1$ System is critically damped

(a) (i) $V = 0$ - the copacitor is initially uncharged

(ii) Current through an inductor cannot change instantaneously initial current $\frac{1}{V_0} = \frac{V_0}{V_0} = \frac$

is for a system in an initially quiescent state, i.e.


-18-

			_
<u> </u>	_	(co	, 1
$\cdot \cdot \cdot$	()	100	$\sim +$

 $V = \mathring{V} = 0$ at t = 0.

The impulse response on page 7 can match the initial conditions on V and \mathring{V} but not the final condition on V.

The key features required of a sketch are:

(i) Correct initial value of V (OV),

(ii) Correct final value of V (40 V),

(iii) Initial gradient of V (non-zero),

(iv) Critically damped response - no oversmoot.

QII (cont)	
(c) If the two masses move with equal amplitude of	and phase
the middle spring is unstretched and transmits	
The right hand mass then behaves like a simple	
mass-spring system:	
m W	
$\omega^2 = \frac{4\kappa}{m}$	
$\omega = 2 \kappa$	
	Touthimm to 1 - 12 th
Othervise under the specified hamonic excitation	
	The Application and the Company of t
$\ddot{x} = -\omega^2 \times & \ddot{y} = -\omega^2 y \text{if } x = X \cos \omega t$	= & y=Ycoswt
- ZK 6K-MW2 4/ (0)	
If $x = y$ (equal amplifude and phase), the	e second
equation gives	
$-2\kappa + 6\kappa - m\omega^2 = 0$	
$: m\omega^2 = 4\kappa$	
$: \omega = 2 \sqrt{\kappa}$	

-21-