ENGINEERING TRIPOS PART IA

Tuesday 9 June 1998 1.30 to 4.30

Paper 4

MATHEMATICAL METHODS

Answer not more than **eight** questions, of which not more than **four** may be taken from Section A and mot more than **four** from Section B.

The approximate number of marks allocated to each part of a question is indicated in the right margin.

Answers to questions in each section should be tied together and handed in separately.

SECTION A

Answer not more than four questions from this section

Find, explaining carefully each step in your argument, the shortest distance between the line L_1 , which passes through the points (1,1,1) and (2,3,6), and the line L_2 , which passes through the points (-1,0,1) and $(4,10, \alpha)$. Explain what happens when $\alpha = 26$.

[10]

The plane P passes through the origin and has normal vector parallel to $(\beta,-2,1)$. Determine the point of intersection of P and L_1 when $\beta \neq -1$, and explain what happens when $\beta = -1$.

[10]

2 (a) Find the limit as $x \to 0$ of

$$\frac{x^3}{x - \sin x \cos x}.$$
 [6]

(b) Determine all values of z such that

$$\cos z = 2. ag{6}$$

(c) Determine the power series expansion, up to and including terms in x^4 , of

$$\frac{1-\cos x}{e^x(1+x)}$$
 [8]

3 (a) Solve

$$\sin x \frac{dy}{dx} + y \cos x = x \cos x$$

with y = 1 when $x = \frac{\pi}{2}$. [10]

(b) Determine the general solution of

$$\frac{d^2y}{dt^2} - 2\frac{dy}{dt} - 24y = e^{6t}.$$

[10]

4 (a) Solve

$$2y_{n+1} - 13y_n + 6y_{n-1} = 0 ag{8}$$

when $y_0 = 1$ and y_n tends to zero as $n \to \infty$.

(b) The x'y'z' axes are obtained by rotating the xyz axes by an angle 45° about the y axis. Determine the matrix R such that the vector \underline{y} relative to the xyz axes takes the form $R\underline{y}$ relative to the x'y'z' axes. Relative to the xyz axes the matrix A takes the form

$$A = \begin{pmatrix} 2 & 1 & 2 \\ 3 & 0 & 6 \\ 2 & 6 & -1 \end{pmatrix}.$$

Explain why A takes the form $A' = RAR^T$ relative to the x'y'z' axes, and calculate A'.

5 The 3×3 matrix A has eigenvalues λ_1 , λ_2 , λ_3 and corresponding eigenvectors $\underline{e_1}$, $\underline{e_2}$, $\underline{e_3}$. Determine the eigenvalues and corresponding eigenvectors of

- (a) A^n , where n > 0 is an integer;
- (b) A^{-1} .

[6]

Calculate λ_1 , λ_2 , λ_3 and $\underline{e_1}$, $\underline{e_2}$, $\underline{e_3}$ for

$$A = \begin{pmatrix} 10 & 0 & 0 \\ 0 & 3 & -2 \\ 0 & -2 & 3 \end{pmatrix}.$$

Given that $\underline{x} = (1,1,2)^T$, calculate approximate expressions for $A^{10}\underline{x}$ and $(A^{-1})^{10}\underline{x}$. [14]

SECTION B

Answer not more than four questions from this section

Let the input x(t) and the output y(t) of a linear, stationary system be zero for t < 0. If x(t) = 1 for $t \ge 0$ then y(t) = t for $t \ge 0$. What is y(t) for the following choices of input?

(a)
$$x(t) = \delta(t)$$

(b)
$$x(t) = t^2$$
 [7]

$$(c) x(t) = e^{-t} [7]$$

7 The complex Fourier series of a function y(t) is

$$y(t) = \sum_{n=-\infty}^{\infty} \frac{3+in}{n^2+1} e^{int}.$$

Express the Fourier series of y(t) in real notation.

[8]

Express x(t) as a complex Fourier series where

$$x(t) = \cosh t$$
 in the range $-\pi$ to π . [12]

8 (a) A tray contains six capsules which are identical except that four are red, and two are green. A robot is intended to place the red capsules in tray A, and the green ones in tray B, but makes errors with a 5% probability. The robot randomly picks a capsule and places it in tray B. Find the probability that the capsule is red.

[6]

(b) This first capsule remains in tray B. The robot now picks a second capsule and places it in tray A. Find the joint probability that this capsule and the one previously placed are both red.

[7]

(c) The remaining capsules are picked and placed. What is the probability that tray B contains only red capsules?

[7]

9 Find y(t) for each of the following equations:

(a)
$$\ddot{y}(t) + 3\dot{y}(t) + 2y(t) = 1$$
 where

$$\dot{y}(0) = y(0) = 0$$

[8]

(b)
$$\ddot{y}(t) + 2\dot{y}(t) + y(t) = \sin(t)$$
 where

$$\dot{y}(0) = y(0) = 1$$

[12]

Sketch the surface $z = (x^2 + y^2)$. 10

[6]

Calculate

$$\frac{\partial \underline{r}}{\partial x}$$
 and $\frac{\partial \underline{r}}{\partial y}$

where $\underline{r} = x\underline{i} + y\underline{j} + z\underline{k}$. Hence find an expression for the normal to the surface at all [14] points.