ENGINEERING TRIPOS PART IA

Tuesday 13 June 2000 1.30 to 4.30

Paper 4
MATHEMATICAL METHODS

Answer not more than eight questions, of which not more than four may be taken
from section A and not more than four from Section B.

The approximate number of marks allocated to each part of a question is
indicated in the right margin.

All questions carry the same number of marks.

Answers to questions in each section should be tied together and handed in
separately.
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SECTION A

Answer not more than four questions from this section.

1 (a) Determine the line of intersection of the planes:

Plane A: 2x+3y-z=1
Plane B: xX=y+z=2

(b) (i) Find the equation of one of the planes which is distance 1 from
plane A over its entire area.
(il) How many such planes are there?

(¢) Find the equation of one of the lines which is distance 1 from the two planes
along its entire length.

2 (a) Find:
lim sinxcoshx—x
x—0 x(1—cos x)

(b) Find all values of:
sin™! (2i)

(¢) Simplify:
{lax(xc)lxe}xb

[6]

(6]

(2]

[6]

(7]

[7]

(6]



3 (a) Find the general solution of:

2
ii-%-zgxlw:smx 8]
dx

(b) Find the solution of:
S, —28,_ 1+ (1 ~—82)Sn__2 =

with Sy =0 and S; =1 and where € is a constant. [8]

(¢) By considering the case € — 0 for your answer to part (b), or otherwise,

find the general solution of:
Sp=28y-1+Sp—2=0 [4]

(TURN OVER



4 (a) By considering the simplification formula for a vector triple product, show
that, for any vector x and any unit vector n:

X = x.nn + nx(xxn) [4]

(b)

nx(xxn) Figure 1 shows the plane containing xxn
and nx(xxn). Explain why the angle
between these two vectors is a right angle
and why they are of equal length. Describe
the direction, and sense, of n relative to this
plane.

xXXn (4]

Fig. 1

(¢) A matrix Q is to represent a rotation by o about the n axis. By considering
the effect of this rotation on x.nn and on nx (xxn), or otherwise, show that:

Qx = x.nn + nx(xxn)coso.—xxnsina

Hence show that
Qx = x.nn(l-cosa) + X coso,—XXn sino. [6]

(d) Find Q for the case of o = -;E and n' :(-— —_— [6]

1 1
o)



5 (a) Find the eigenvalues and eigenvectors of the matrix:

3 0 4
02 0
4 0 3

You should check that your answers are consistent with known properties of the
eigenvalues and eigenvectors of this type of matrix.

(b) The symmetric matrix A has eigenvalues A, A, and A, (which are distinct)
and corresponding normalised eigenvectors u, , u, and u; . The non-zero matrix B has
the property that it commutes with A, i.e.

AB = BA

Show that Bu, is also an eigenvector of A , corresponding to eigenvalue A, , and hence
that it is parallel to u;. Hence deduce that u, , u, and u; are also eigenvectors of B.

(¢) For the matrix B of part (b), find an orthogonal matrix U such that
BU=UD, where D is a diagonal matrix. Hence show that B is symmetric.
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SECTION B

Answer not more than four questions from this section.

6 (a)

The function:
O<i<m

t
f(t)“{—t -n<t<0

is periodic of period 2.

(b)

(1)  Find a Fourier series representation for this function.
(i) Describe which properties of a function influence the rate at which a

Fourier series representation of that function converges. Illustrate this using
the Fourier series representation of f{z).

The half-wave rectified cosine wave, fi(t) , shown in Fig. 2(a), is periodic

of period 2w and has a complex Fourier series given by:

[NOTE:

f](t)z zcneint

n=—00
(i) By making a substitution for ¢ in this equation, or otherwise,
determine, in terms of ¢, , the coefficients d,, in a complex Fourier series

representation of the function f,(t), shown in Fig. 2(b), which is also
periodic of period 27.

(ii) Hence find, in terms of ¢, , the complex Fourier series representation

of the full-wave rectified cosine wave, f3(t) , shown in Fig. 2(c).

(iii) Explain carefully why some values of n are not present in the
representation for f3(¢)and identify these values of n.

For part (b) of this question, there is no need to evaluate the Fourier
coefficients.]

(cont.
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7 (a) A linear system has a step response given by:

et 120
0 otherwise
Determine and sketch the impulse response.

(b) Using a convolution integral, find the response y(f) of the above system to
an input x(#) given by:
t t=20

0 otherwise

(¢) How would you expect y() to be related to the step response of the system?

(d) Verify your answer to part (c).
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9

8 A game consists of players throwing balls in succession in order to hit one of two
targets - target A and target B . The object of the game is to hit target A and then target
B with successive balls. A player's turn thus consists of continuing to throw balls until
target A is hit. Once this is achieved, the player then aims for target B. A successful hit
of B attained on the throw immediately following the hit of A ends the player's turn. If
B is missed on the throw immediately following the hit of A, then the player must
continue throwing to achieve another hit of A before a throw at B can again be
attempted. If a hit of A is accidentally achieved when aiming for B, this does not count.
The process is repeated until the player is successful.

A certain player is successful at hitting A with a single ball (when aiming for A)
with probability a and at hitting B (when aiming for B) with probability b.

(a) Show that:
P(A)=a, P(B;)=0, P(Cy)=(-a),

P(Ay)=a(l-a), P(By)=ab and P(C,)=(-a)* +a(l-b)
where the probability of hitting A with the n'th ball is denoted by P( 4,, ), that of hitting
Bby P(B, ), and that of missing the aimed-for target by P(C,, ).

(b) Explain why P(A, )+ P(B, )+ P(C, )<1for n>2.
(c) Write down expressions for P( A,y ).P(B,+1) and P(C, ) for n=2,
and hence show that:
P(C,1)=(1-a)P(C, )+(1-b)aP(C,_1) (1)

and explain why P(A,,;) and P( B, ) also satisfy the same difference equation.

(d) For the case a = —i— and b = %, show that the general solution of eqn. (1) is

(5] o)

where o and 3 are constants.

(¢) Find P(B,).
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9 (a) Solve using Laplace transforms:
Vy+4y+3y= et
where y(0)=1 and 3»(0)=0. [10]

(b) Describe how the Laplace transform of the convolution of two functions is
related to the transforms of the individual functions. 3]

(c) By taking Laplace transforms, or otherwise, find the function y(z), where:

y(t)=1+j; y(T)sin(f—1)dt 7]



10

(a)

(b)

11

(i)  State the conditions under which P(x,y)dx+Q(x,y)dy is an exact
differential. [4]

(i) For the case:
P=2x3-2 and Q=3x2y%+9y>
x

show that P dx+Qdy is an exact differential and find a function f{x,y)
such that df = Pdx+Q dy. 4]

(i)  Find the minimum value of the function:

f(xy)=(x—a)j* +(y-b)? )

when x and y lie on the plane x+y—-1=0. [3]

(i) Find a relationship between the possible changes dx and dy as x and y
vary over a surface g(x,y) = 0. Hence show that changes in a function
f(x,y), when x and y are constrained to vary over the surface g(x,y) = 0,
satisfy:

dg
o o
df =dx| L 0x
y=dx ox dg dy
dy

(3]

(iii) Hence find a condition for f to have a stationary value when x and y
vary over the surface g(x,y)= 0. [2]

(iv) Verify that this condition is satisfied for the minimum of the function
defined by eqn. (2) as x and y vary over the planex+ y—1=0. [4]
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