PART IA

Tuesday 12 June 2001

9 to 12

Paper 3

ELECTRICAL AND INFORMATION ENGINEERING

Answer not more than **eight** questions, of which not more than **three** may be taken from Section A, not more than **three** from Section B, and not more than **two** from Section C.

The approximate number of marks allocated to each part of a question is indicated in the right margin.

All questions carry the same number of marks.

Answers to questions in each section should be tied together and handed in separately.

SECTION A

Answer not more than three questions from this section.

- A battery, modelled as a 12 V e.m.f. in series with a resistance of 1 Ω , is being charged by a constant current source through the network shown in Fig. 1. The multi-range ammeter A_m used to measure the battery current drops a voltage of 1 V at full-scale deflection on all ranges. Here it is set to its 10 A range and it reads 1 A.
 - (a) What is the value of the constant current supply?

[7]

(b) Determine the powers dissipated in every component in the circuit and find the input power. What fraction of the power goes into the battery, ignoring any heating effect on it?

[6]

(c) What would be the current into the battery if the ammeter was replaced with a wire of zero resistance?

[7]

Fig.1

- The circuit of Fig. 2 is used to drive a speaker coil, represented by L from an oscillating voltage source v_s of angular frequency ω .
- (a) Find an expression for the transconductance (i/v_s) of this circuit if the operational amplifier is ideal (infinite gain; infinite input impedance; zero output impedance).
- (b) If instead the operational amplifier has finite gain A while otherwise remaining ideal, derive an expression for the transconductance of the form 1/(X+jY) in terms of R, ω , L and A. [5]
- (c) Find the -3 dB point for the transconductance if the amplifier gain A varies with frequency f, and is $A = \frac{100}{1 + j f/f_c}$ and R and L are such that $2\pi f_c = R/L$. [10]

Fig. 2

[5]

- A crane lifts a mass of 1 kg at a speed of 1 ms⁻¹. There are no power losses and the crane's 50 Hz AC motor can be modelled as an inductance L of 50 mH in series with a resistor R, where the latter dissipates a power equal to the output of the motor.
- (a) If the input current is 1 A when lifting this load, what is the power factor of the circuit?

[6]

- (b) If the crane is driven by a higher voltage AC supply through an ideal stepdown transformer with a turns ratio of 20:1, what capacitance can be placed across the transformer's high voltage terminals to give the circuit a power factor of unity? [7]
- (c) If instead of needing power factor correction, the transformer's winding losses for this load are known to be 3 W and 4 VAR's, what will be the high voltage supply and what will be the input power factor? [7]

- 4 (a) Draw the small signal model for the circuit of Fig. 3 if the transistor has a transconductance of g_m . The drain resistance and all other transistor parameters may be ignored. [4]
- (b) Show that an expression for the small signal gain of the circuit v_2/v_1 at an angular frequency ω is:

$$\frac{v_2}{v_1} = \frac{-g_m R_1}{1 + \frac{g_m R_2}{1 + j\omega C_2 R_2}}$$
 [6]

- (c) If C_2 is very large, what does the gain expression become? If the angular frequency ω tends to zero, what is the gain expression? [4]
- (d) What is the gain magnitude and phase change for the circuit if the frequency equals 1 kHz, $C_2 = 300$ nF, $g_m = 0.05$ S and $R_1 = R_2 = R_3 = 1$ k Ω ? [6]

Fig. 3

SECTION B

Answer not more than three questions from this section.

- 5 (a) What are static hazards in digital circuits? Show how static hazards arise and how they can be eliminated using a Karnaugh map. [6]
 - (b) Given:

$$F = A.B.\overline{C}.D + A.C + B.\overline{C}.\overline{D} + \overline{B}.C + \overline{A}.\overline{C}.\overline{D} + \overline{A}.\overline{B}.\overline{C}.D$$

(i) Show using a Karnaugh map that F can be simplified to:

$$F_1 = A.B + \overline{A}.\overline{B} + A.C + B.\overline{C}.\overline{D}$$

(ii) Show that there are a total of four possible simple expressions for F.State whether these solutions are hazard free. [4]

[5]

(iii) Show how F_1 can be implemented using 2-input NAND gates and draw the circuit. [5]

- 6 (a) What is meant by an unused state in the design of synchronous sequential logic? In what situations could an unused state cause improper operation to occur? [4]
 - (b) The state sequence for an excess-three binary counter is shown in Fig. 4.

A	В	С	D
0	0	1	1
0	1	0	0
0	1	0	1
0	1	1	0
0	1	1	1
1	0	0	0
1	0	0	1
1	0	1	0
1	0	1	1
1	1	0	0

Fig. 4

The counter is to be implemented using four clocked J-K bistables.

- (i) Draw a complete state table for the counter, showing the required J and K inputs at each stage. [6]
- (ii) By using Karnaugh maps, find expressions for the J_B , K_B , J_C and K_C inputs. [6]
- (iii) Suggest two possible general methods for returning the counter to the correct sequence if an unused state occurs. [4]

(TURN OVER

			8	
7 (a)	What are the addi	ressing mod	les in a microprocessor? By using the ADDA	
instructio	n as an example, sh	ow the diffe	erence between the Immediate, Direct,	
Extended	and Indexed addres	ssing modes	s of the 6800 microprocessor.	[4]
		C	•	
(b)	A set of numbers	in the range	e \$00 to \$7F that represent a positive half-cycle	
of a tria	ngle wave are stor	ed in a tal	ble starting at location \$1000. The program	
fragment	shown in Fig. 5 i	s to be use	ed to send data from this table to a digital to	
analogue	(D/A) converter, m	emory map	ped at location \$E000.	
_	(i) Copy the pr	ogram frag	ment shown in Fig. 5 and fully comment the	
	operation perform	ned by each	n line. What is the function of the instructions	
	following LOOP(•		[5]
	C		croprocessor clock cycles taken to perform one	[-]
	` '		he microprocessor clock frequency is 8 MHz,	
	-		me interoprocessor clock frequency is 8 wiriz,	F # 1
	how long does thi			[5]
	(iii) If the D/A	converter	could output the number stored at \$E000	
	immediately it w	as stored, v	what would be the average sampling frequency	
	of the output wav	eform?		[2]
	(iv) If it is desire	ed to output	t the waveform at an 8 kHz sampling frequency,	
	outline how the c	ode could b	e modified.	[4]
	LOOPA:	LDX	#\$1000	
	LOOPB:	LDAA	0, X	
		STAA	\$E000	
		INX		
		CDY	#¢1040	

LOOPA:	LDX	#\$1000
LOOPB:	LDAA	0,X
	STAA	\$E000
	INX	
	CPX	#\$1040
	BNE	LOOPB
	LDX	#\$1000
LOOPC:	CLRA	
	SUBA	0,X
	STAA	\$E000
	INX	
	CPX	#\$1040
	BNE	LOOPC
	BRA	LOOPA

Fig. 5

8	(a)	(i)	What is a shift register?	[3]
		(ii)	The output from the final two stages of a 4-stage shift register are fed	
		back	to the input to the first stage via an exclusive-OR gate. How many	
•		steps	s are there in the longest sequence of shift-register states?	[4]
	(b)	Seve	eral 64K bit memory devices, each with four data lines, are to be	
con	nected	l to a r	nicroprocessor with an 8-bit data bus.	
		(i)	What other connections will there be on each memory device?	[3]
		(ii)	How many devices are needed to make 32K bytes of memory?	[2]
		(iii)	How should the chip-select lines on the devices be connected if the	
		mem	nory is to appear in the address range \$0000 to \$7FFF?	[4]
		(iv)	Draw a circuit diagram showing the connection of the devices to	
		micr	oprocessor address, control and data buses	<u>Γ</u> Δ1

SECTION C

Answer not more than **two** questions from this section.

- 9 Two spherical, insulating balloons, each with a diameter of 20 cm, are rubbed all over with a woollen sleeve to a voltage of 100 kV, then placed against each other. You may assume that the total charge on each balloon acts as if concentrated at the centre of the balloon.
 - (a) What is the charge on each balloon? [5]
 - (b) What is the force between the balloons? [5]
- (c) One of the balloons is placed alone against a conductive ceiling coated with insulating paint. If the mass of the balloon is 5 g and charge leaks at a uniform rate from all points on it into the air at a rate of 1 nCs⁻¹, after what time will the balloon fall from the ceiling? [10]

- A bar with a cross-sectional area of 5 mm² and a relative permeability of 1000 is curved into a C shape with a gap of 10 mm between its tips and remaining dimensions as shown in Fig. 6. A straight bar with the same permeability and cross-section as the other is allowed to slide along the axis of symmetry of the C shape, and the two bars are held in contact by 500 turns of a current carrying wire.
- (a) If the separation of the straight bar from the C shape is negligible, what H field is created in the central bar by a current of I = 0.5 A through the wire? [6]
- (b) If a space is opened up by pulling the end of the straight bar 1 mm back from its original position, what is the energy per unit volume of the magnetic field in the space? [7]
- (c) The bar is returned to its original position. Ignoring gravity, what force will pull the bar out of the C shape? [7]

- An air-filled co-axial cable, a unit length of which is shown in half-section in Fig. 7 has an inner conductor of radius a and an outer conductor of radius b, and a current I flows down the inner conductor and back up the outer conductor.
- (a) Find an expression for the H-field between the two conductors at radius r from the centre. [5]
- (b) The current I steadily increases so as to cause a rate of change of flux through the dotted loop of $d\phi/dt$. Find an expression for the e.m.f. around the dotted loop. [5]
- (c) Find the inductance per unit length of an air-filled co-axial cable with an inner radius of 1 mm and an outer radius of 3 mm. [10]

Fig. 7

END OF PAPER