ENGINEERING TRIPOS PART IA

Tuesday 12 June $2001 \quad 1.30$ to 4.30

Paper 4
MATHEMATICAL METHODS

Answer not more than eight questions, of which not more than four may be taken from section A and not more than four may be taken from section B.

All questions carry the same number of marks.
The approximate number of marks allocated to each part of a question is indicated in the right margin.

Answers to questions in each section should be tied together and handed in separately.

SECTION A

Answer not more than four questions from this section.
1 (a) Consider a triangle ABC inscribed in a semi-circle with centre O , as shown in Fig. 1. Prove, by evaluating the scalar product $\overrightarrow{\mathrm{AB}} \cdot \overrightarrow{\mathrm{BC}}$, that the angle subtended at vertex B is always a right angle.
(b) Consider the equation of a plane $a x+b y+c z=d$. Find the point on the plane that is closest to the origin.
(c) Determine the shortest distance between two lines $\mathbf{r}=\mathbf{a}+\lambda \mathbf{b}$ and $\mathbf{r}=\mathbf{c}+\mu \mathbf{d}$.

Fig. 1

2 (a) Using l'Hopital's rule, find:

$$
\lim _{x \rightarrow 1 / 3}\left(\frac{1-2 \cos (\pi x)}{1-3 x}\right)
$$

(b) Using a power series approximation, find:

$$
\lim _{x \rightarrow 0}\left(\frac{1}{\sin ^{2} x}-\frac{1}{x^{2}}\right)
$$

(c) Find all solutions of:
(i) $\cosh z=i$
(ii) $z^{6}-2 z^{3}+2=0$.

3 (a) Find the solution of the differential equation:

$$
4 \frac{d^{2} x}{d t^{2}}+4 \frac{d x}{d t}+x=8 \cos ^{2}\left(\frac{t}{4}\right)
$$

which satisfies the boundary conditions:

$$
x=\frac{d x}{d t}=0 \quad \text { when } t=0
$$

(b) Find the solution of the linear difference equation:

$$
4 y_{n}+4 y_{n-1}+y_{n-2}=0
$$

given that $y_{0}=1$ and $y_{1}=-1$. Verify that $y_{2}=0.75$.
(a) Consider the scalar triple product $\mathbf{a} \cdot(\mathbf{b} \times \mathbf{c})$
(i) Give a geometrical interpretation.
(ii) For the special case in which the vectors \mathbf{a}, \mathbf{b} and \mathbf{c} are coplanar show that:

$$
\mathbf{a}^{t} \mathbf{B} \mathbf{c}=\mathbf{c}^{t} \mathbf{A b}=\mathbf{b}^{t} \mathbf{C a}=0
$$

and identify the elements of the 3×3 matrices \mathbf{A}, \mathbf{B} and \mathbf{C}.
(b) Find the value of s for which the following equations do not have a unique solution:

$$
\begin{aligned}
2 x+3 y+z & =2 \\
x+2 z & =t \\
s x+4 y & =2
\end{aligned}
$$

For what value of t will the planes represented by these equations intersect in a line?
(c) A rotation matrix \mathbf{R} represents a rotation about an axis, l, by an angle θ. Find one of the eigenvectors and the corresponding eigenvalue.

5 (a) A symmetric matrix A has distinct, real eigenvalues λ_{1}, λ_{2} and λ_{3}. Show that the corresponding eigenvectors, $\mathbf{u}_{1}, \mathbf{u}_{2}$ and \mathbf{u}_{3}, are orthogonal.
(b) Consider a general vector:

$$
\mathbf{x}=\alpha \mathbf{u}_{1}+\beta \mathbf{u}_{2}+\gamma \mathbf{u}_{3}
$$

where \mathbf{u}_{i} are the eigenvectors of \mathbf{A}. If all the eigenvalues of \mathbf{A} are non-zero, evaluate:
(i) $\mathrm{A}^{-1} \mathrm{x}$
(ii) $\mathbf{A}^{N} \mathbf{X}$ where N is a positive integer
(iii) $\left(\mathbf{A}^{-1}\right)^{N} \mathbf{x}$
(c) A position vector is transformed by an orthogonal matrix \mathbf{Q} such that:

$$
\mathrm{y}=\mathrm{Qx}
$$

By first showing how the lengths and angles are changed by the transformation, show that the area of any triangle is unaffected.

SECTION B

Answer not more than four questions from this section.

6 (a) Explain the role of convolution in Linear Systems.
(b) A linear system has an impulse response $g(t)$. Show that the unit step response of such a system is given by:

$$
y(t)=\int_{0}^{t} g(\tau) d \tau
$$

(c) A finite duration integrator can be modelled by the impulse response given by:

$$
g(t)=H(t)-H(t-a)
$$

where $H(t)$ corresponds to a step function.
(i) If the input to this system is given by:

$$
x(t)=A \exp (-b t) H(t)
$$

find an expression for the output of this system.
(ii) Demonstrate graphically that the result you obtain makes physical sense.

7 (a) Find the Fourier series of:

$$
f(x)=x^{2}
$$

for $0<x \leq 2$, by extending the function as an even function of x and making it periodic with period 4.
(b) What would be the implications, concerning convergence, if you were to extend the function as an odd function of x ?
(c) Show that the complex Fourier series of:

$$
f(x)=x
$$

for $-2<x \leq 2$ is given by:

$$
f(x)=\sum_{n=-\infty}^{\infty} \frac{2 i(-1)^{n}}{n \pi} \exp \left(\frac{\pi i n x}{2}\right)
$$

This expression is correct for all values of n apart from $n=0$, in which case the Fourier coefficient is zero

8 (a) If $F(s)$ is the Laplace transform of $f(t)$, show that the first derivative of $F(s)$ with respect to s is given by:

$$
\begin{equation*}
\frac{d F(s)}{d s}=L[-t f(t)] \tag{2}
\end{equation*}
$$

where $L[$.$] stands for the usual Laplace transform.$
(b) Show that if:

$$
t \frac{d^{2} f(t)}{d t^{2}}+\frac{d f(t)}{d t}+t f(t)=0
$$

with $f=1$ and $\frac{d f}{d t}=0$ at $t=0$, then:

$$
\left(s^{2}+1\right) \frac{d F(s)}{d s}+s F(s)=0
$$

(c) Hence show that:

$$
F(s)=\frac{C}{\sqrt{s^{2}+1}}
$$

where C is a constant.
(d) Show that $F(s)$ may be written:

$$
F(s)=\frac{C}{s}\left(1+\frac{1}{s^{2}}\right)^{-1 / 2}
$$

and by expanding the last expression as a power series in $1 / s$, show that:

$$
f(t)=C \sum_{n=0}^{\infty} \frac{(-1)^{n} t^{2 n}}{\left(2^{n} n!\right)^{2}}
$$

9 (a) Find the positions and nature (i.e. maxima, minima or saddle points) of the stationary values of the function:

$$
f(x, y)=2 x^{3}+6 x y^{2}-3 y^{3}-150 x
$$

(b) Sketch contour lines for this function.

10 (a) Explain, briefly, the use of tree diagrams in the calculation of probabilities.
(b) Assuming that the birth rate remains the same throughout the year and that people are born independently of each other, show that the probability that n people chosen at random will all have different birthdays is given by:

$$
\begin{aligned}
& \text { Note that if } \mathrm{n} \text { is greater } \\
& \text { than } \mathrm{d} \text { then the probability } \\
& \text { must, of course, be zero }
\end{aligned}
$$

$$
p_{n}=\frac{d!}{(d-n)!d^{n}}
$$

where d is the number of days in a year.
(c) On the planet Zog, there are twenty days in a year. Show that in a group of 3 Zogians the probability that at least two have the same birthday is 0.145 .

