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1
ENGINEERING TRIPOS PART IA JUNE 2003
SECTION B: MATERIALS
148
o
6. (a) m=pV = ,Oa2 (H —h) above atypical section i
dh
mg ) /
o(h) =—= pg(H—-h)  (compression) v y
¢ h
o(h) _pg :
Local e(h) =——~=—2(H~h co
ocal &(h) 3 z ( ) (compressive) &

Length change of a typical element of length dh is ¢ dh.

H H 2
Total length change AH:J gdh:_'o_:g.f (H—h)dh:’ogH

0 E JO 2F
Fractional change in length = AH _ psH

H 2F

(strictly HAH , negligible difference for small -45)

For A—:- = 0.001%, p=2750 kg/m>, E =123x10° N/m?, g=9.81m?%/s

= H =927m

Opase = P &H =1000MPa = H =37km , ie. stone is very strong.

(Note: the strength value in the question is on the high side, and is strictly for small samples
of high quality stone; values for bulk masonry could be around 50 times lower, but the
conclusion is essentially the same — tall stone structures are not close to their compressive
strength, but are limited by bending).

() f =f(EL L M,), iec assume f o< (EI)* 1P M!
Dimensions M,L. T: T ! e« ML3T2)® @)F ov)”

Consideringonly T: -1 =~ 2 ¢, az% so  f e JE, E ocf2

(Not needed, but a = -y, y-—-—% and 3a=—ﬂ,ﬁ=~%; so (EI )< Mol?’f2

%&



Atoms touch on diagonals of the faces.

4R 2a% =(4R)?

a =242R

Cube volume = a> =(2\/2_R)3

SX% + 6x%=4

Number of atoms/cube

i

Volume of atoms/cube = 4 X % 7R3
167 R3
3
Hence packing factor = =0.74
(2\/ 2)R3
Mass of Al atom = atomic mass 26.9815

= = ~-26

4 x 4.48x10726

Hence p =
(2+/2x1.432x10710)3

= 2700 kg/m3; same as databook value.

Examiner’s comments

Popular question, done by most candidates, with above average marks.

Part (a) was very close to an Examples problem, but many still failed to appreciate that stress
and strain varied with depth. The purpose of the question is to recognise that the change in
length required integration, but many simply used the stress at the base to find a strain and
apply this to the whole length. Significant numbers omitted “g” from their expression for
weight.

Part (b) was a simple dimensional analysis problem, perhaps not expected by many on the
Materials paper. Many tried to relate E to (f, EI, I and M,) rather than f to (EI, [ and M,).
More worrying though were: an inability to find the dimensions of E or EI; treating force “F”
as a dimension (expressing mass as FTZ/L); and turning “m” (metres) directly into dimension
“M” (mass). '



b

7. (a) Yield stress is the load per unit area when the limit of elasticity is reached, usually
measured under uniaxial loading in a tensile test. Hardness is the load (either in kg or N)
applied to an indenter pressed into a flat surface, divided by the projected area of the
indentation made. Ductility is the total plastic strain to failure in a tensile test after fracture.

Yield stress and hardness do not depend on specimen dimensions. Ductility includes both the
uniform straining prior to necking in a tensile test, and the localised extension in the necked
region — hence its value depends on the length and cross-section area of the test piece (i.e. not

a material property).

(b)
INTERFACE

L 08, oD

op, AR, B¢,

[ ¢ &
\\/ii VAN cp, DE, O€

Velocity (or displacement) diagram:

O

a o INTEREACE LEN&TH
v Yo % v/ Li
Jz z 2
v v d oA L/]2
o < LT3
v BC L2
Jiv Jiv cD L;JE
DE L/f5
c oE L/JL
oQ L
0o L-

External work rate = F'v
Internal work rate =6 kL v
Hence F:6kL:30yL

Hardness = F/L (as unitdepth) =30,
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vaLo T
(V44

v/ /2
v/ T2
Jzv
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4
(c) For all hardening mechanisms, the contribution to strengthening is of the order Gb/l,
where G is the shear modulus, b is the Burgers vector, and 1 is the obstacle spacing. The
microstructural parameters controlling obstacle spacing are:
- work hardening: dislocation density
- solid solution hardening: concentration of solute
- precipitation hardening: volume fraction and size of precipitates

Examiner’s comments

Very unpopular question (attempted by 40% of candidates), below average marks
Descriptive parts mostly done well, but the upper bound problem proved too difficult —
though some students got full marks. In retrospect it would have been better to have provided
the hodograph in outline, and asked for this to be annotated and analysed.

22



5
8 (a) Tensile failure: worst defect (in terms of size and orientation to tensile stress)

governs failure (when K = Kjc).

Compressive failure: many cracks propagate stably, growing parallel to the applied stress;
final failure by crushing and an unstable shear band forming.

Typically compressive strength is 10-15 times greater than tensile strength.

m
(b) G) P,(V)=exp —(—O_—} {——V—J as stress uniform; G,, Vo, m: constants
o

o o

For same probability of failure: 0" V; = 03" V;

m 174 2
(_U_f_) .—_[ “y’] o 30T hd asm=8, o, = 423 MPa

500 Vs, 50x8x8

(Check: larger volume, thus lower failure stress).

(Note: no need to find o, but if V, is taken to be the volume of the square section specimen,
can solve for o, by substituting P = 0.5 into the Weibull equation, with V =V, This gives
G,= 523 MPa, which is then substituted into the equation with the new volume).

(LV:X)(SOKG(S

0 Buinsvection: o v) = o 2 '
(i) By inspection: o*(y)~0',,mx4 C ____________________'l‘:tj_____”___w 2

For same failure probability: o," V = J.V oy )y oav

4 m
ot (8x8x50) = J;) {:O'max %ﬂ 8 x50 dy (top half only: tensile region)
4
m+1
4
OI'X8 = Op| —2——| = O
4" (m+1) |, (m+1)

Omax _ (y(m+1)}’™ = 1435 hence Oy =607 MPa
Oy

(iii) Tension locates the worst flaw in the whole volume; bending loads only half in tension,
with the stress varying from zero to Gmax, giving a lower probability of large flaws
seeing a high tensile stress (or alternatively, requiring a higher Gpay to give the same

probability).

24



O max — (2(m+1))l/m
Oy

0 max

Hence as m — large value, —> 1 (i.e. failure stress is deterministic, like a yield stress).

Oy

o
As m — smaller value (e.g. m = 3), ———

0
(low m) means that the difference between bending and tensile strength increases.

> 1, i.e. a greater spread in tensile failure stress

Examiner’s comments

Popular question, below average marks.

This was the first time Weibull analysis had appeared in the IA exam, having moved from IB
the previous year. A large proportion did not understand the meaning of the reference stress
G., taking this to be the value given (for probability Y2, rather than 1/e). Very few recognised
they didn’t need it anyway, and could use simple scaling of stress and volume. The
integration in (b,ii) was done badly — many struggled to relate 6(y) to Gmax, thinking they
needed to know the moment, and there were few complete correct integrals. This probably
reflected removal of the (harder) 3-point bending problem from the Examples, replacing it
with a rather obscure 1D problem.
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(b) Add fibres (e.g. glass) or particles (glass, silica, rubber) which either promote multiple
cracking, or which bridge cracks, both leading to greater energy dissipation as the material
fractures.

(c) (i) Nominal area: projected area of component over which contact is made
True area: sum of area of microscopic contacts at tips of surface asperities

MaPEp (T GoeTacTs (TRUE PRER)

- NoMiNAL A REA
True contact area: o< load, and o< 1/Hardness.
w 3w
At each contact, assume load/area = Gy, ayy, = — = ——
o H
. . . : w
(Alternatively, treat each contact like a hardness indentation, so @, = —)
H

True contact area independent of nominal contact area (for small fractions, typical of metals).

For elastomers, the low modulus allows the surfaces to conform elastically, so true area
approaches nominal area and contacts do not yield (so doesn’t depend on hardness).

Lw
(11) . — True contact area carries both F and W.
SN
w F —_
Normal stress = — = 0y,;  shear stress = — = k (for dry sticking contact)
a a
F o,/2
As k=0,/2 —=p=~—— =05
w oy
. . w
(Alternatively, if normal stress = — = hardness, 307, then u = 1/6).
a

b
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(d) Aqueous corrosion examples: Prevention:

(only 2 required)

Rusting of iron due to exposure to water + Paint (or other coatings)

oxygen in the atmosphere (e.g. bicycles)

Rusting of steel sheet (corrugated roof, car body) Galvanise with Zn, which
corrodes preferentially

Corrosion of steel ships, pipes Galvanic protection — attach
sacrificial anode which is more
electronegative (e.g. Mg)

Rusting in central heating system Use closed system, so oxygen is
used up; repair leaks to prevent
fresh oxygen supply.

Examiner’s comments

Popular question, with above average marks.

Answers to (a,d) on polymers and corrosion were excellent, and the discussion of friction was
OK apart from the estimate of p, which was full of attempts to equate forces and stresses.
Part (b) on polymers produced greatest confusion — lots of detailed explanations of how to
toughen a polymer, using the techniques applied to strengthen metals (such as work hardening
to raise the dislocation density). Many thought it a good idea to raise the temperature — not
the most practical solution in a design context.

3+



9
10. (a) Mass, m < L[* (6/F)° p¢ E¢ with a=5/2

Dimensions M, L, T: M! o 152 m7I12)? (ML7)¢ MLIT2)4

M: l=-b+c+d 1)
L: 0=5/2-3c—-d (2)
T: 0=2b-2d (3)

Hence: b=d (from3); ¢=1 (from 1); d =-1/2 (from 2); and b=-1/2
Hence: m o /2 (§/F )% p E7V/?

For fixed L, (6/F): minimum mass = maximise £ 12y Joj

Section size is not an independent variable — given (8/F) and L, the modulus E will fix the

section size (via EI). Conversely, size is the free variable which enable the stiffness
constraint to be met as the material varies.

b
®) n SroPE 2

K// Q‘/»/f, = CorSTANT

. Log € = 2 ap v C

(ooo T

(03 '3
(&P«:\} e To M IMILY \

MAIS
INeREASING  SizE, BUT

CORSTANT  HASS AVD

o r

DEFLECTION AT WA, LoAD

0.\ { (o (;3 f (V\j/m3>

(c) To avoid failure while minimising mass, derive a second performance index — either by
dimensional analysis (for which the information given in insufficient) or from objective and
constraint:

Objective: m = p AL

Constraint: 0 ,,,, = 0 ¢ (failure stress of material), with Omax depending on section size

(through I/ymax)-
Eliminate free variable (size) to find merit index for minimum mass which doesn’t fail.



10
To find whether stiffness or strength is limiting for each material:
- find actual mass required to meet each constraint
- take the heavier of the two for each material, i.e. to just meet the more stringent of the two
- optimum material has the lowest of these heavier masses.

This requires that the design parameters are defined numerically (not just specified as
constant), i.e. length, load and allowable deflection. Also need the bending mode to give the
numerical constants in the bending formulae for deflection and stress (e.g. cantilever, 3-point
bending etc).

(Notes: it is meaningless to directly compare the values of the 2 merit indices for a given
material, since though each is proportional to mass, it is a different mass in each case — one
which provides adequate stiffness, the other which is strong enough.

Another misconception is that the materials can be ranked on the first constraint, and then the
maximum stress calculated from the top down until a material is found which is below its
failure stress. This procedure does not find the lightest — for example, if all the materials are
strength-limited, the first to come through on the basis of low mass-for-stiffness need not be
the lightest in relation to strength.)

Examiner’s comments

Moderately popular question (attempted by 70% of candidates), below average marks.

Part (a) threw up similar trouble with dimensional analysis as Q.6, though this problem was
similar to an Examples question. Simple errors in algebra led many astray, e.g. when
gathering terms on dimensions, (1/T)® came through as —2b.

In part (b), many candidates had clearly not appreciated that a given merit index line of
constant value corresponded to equal mass and equal stiffness, with size varying — which is
the whole point of the analysis. Some interesting merit indices such as E”/p'? emerged, and
the student ploughed on doggedly to plot this on a selection chart. Descriptions of how to
extend the analysis to include a second constraint were poor — clearly people prefer to just do
the sums, rather than to outline the steps involved. Many thought the second constraint set a
limit on a new property, rather than the property for each material setting a new requirement
on section size (to avoid failure). One character suggested using the selection software, so
you could “hand all the decisions over to a computer”. It is to be hoped they find another
career rather than Engineering.

H.R. Shercliff
June 2003
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