(Q1)

a) Hydrostabic prenure a depbh z is $\rho g z$

$$
\begin{align*}
& \text { wiekh }=(100-z) \\
& \Rightarrow \quad \delta F=\operatorname{eg} z(100-z) d z \tag{2}
\end{align*}
$$

b)

$$
\begin{align*}
F & =\int_{0}^{40} \rho \cdot g \cdot z(100-z) d z \\
& =1000 \times 9.81\left[50 z^{2}-\frac{1}{3} z^{3}\right]_{0}^{40} \\
& =1000 \times 9.81\left(50-\frac{40}{3}\right) \times 40^{2} \\
F & =575.5 \mathrm{MN} \tag{4}
\end{align*}
$$

Exammer's comenents:
(i) Many candedder were unable bo wibe $P=P R T$.
(ii) Many unable fo wribe wabh $=(100-z)$.
(iii) Many confored holween " N " \& " Pa " as units.

JPL 1/JULY/OS
(Q2)
$1 A 2005$ P1 SA

$$
\begin{aligned}
& \dot{\dot{Q}=-\lambda 2 \pi r L \frac{d T}{d r}} \begin{array}{l}
\text { (DATABCon) } \\
\frac{\dot{Q}}{L} \int_{r_{1}}^{r_{2}} \frac{1}{r} d r=-\lambda 2 \pi \int_{T_{1}}^{T_{2}} d T \\
\frac{\dot{Q}}{L} \ln \left(r_{2} / r_{1}\right)=-\lambda 2 \pi\left(T_{2}-T_{1}\right) \\
\frac{\dot{Q}}{L}=-\frac{\lambda 2 \pi\left(T_{2}-T_{1}\right)}{\ln \left(r_{2} / r_{1}\right)} \\
\frac{\dot{Q}}{L}=-\frac{380 \times 2 \times \pi(350-400)}{\ln (50 / 20)} \\
\frac{\dot{Q}}{L}=130.3 \mathrm{KW} / \mathrm{m}
\end{array} \quad \text { N.B. } \frac{r_{2}}{r_{1}}=\frac{D_{2}}{D_{1}}
\end{aligned}
$$

Excmener's comonents:
(i) Almont everyone got correct formula from Datalook.
(ii) Only alout 30% integrabed the defferenbid eqn!

JPL 1 JULY OS.

IA 2005 PI SA
Qu)

$$
\begin{aligned}
& \mathrm{CH}_{4}+x\left(\frac{79}{21} N_{2}^{*}+\mathrm{O}_{2}\right) \rightarrow \mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O}+x \frac{79}{21} N_{2}^{*} \\
& 0: x \times 2=2+2 \Rightarrow x=2 \\
& \mathrm{CH}_{4}+2\left(\frac{79}{21} N_{2}^{*}+\mathrm{O}_{2}\right) \rightarrow \mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O}+2 \times \frac{79}{21} N_{2}^{*} \\
& \hline
\end{aligned}
$$

b) Wet \Rightarrow total kiel $=1+2+2 \times \frac{79}{21}=10.52$

$$
\begin{align*}
& \mathrm{CO}_{2}=\frac{1}{10.52}=9.5 \% \\
& \mathrm{H}_{2} \mathrm{O}=\frac{2}{10.52}=19.0 \% \\
& \mathrm{~N}_{2}=\frac{2 \times 79 / 21}{10.52}=71.5 \% \tag{3}
\end{align*}
$$

DRY: ISNORE $\mathrm{H}_{2} \mathrm{O} \Rightarrow 8.52$ hemal total

$$
\begin{align*}
& \mathrm{CO}_{2}=\frac{1}{8.52}=11.7 \% \\
& \mathrm{~N}_{2}=\frac{2 \times 79 / 21}{8.52}=88.3 \% \tag{3}
\end{align*}
$$

Examiner's comments:
(i) Mont managed the Chamiend equation.
(ii) About 50\% got "wet" and "Dry" ereorrect.
"wet" when water included
"Dry" when water exclucled

JPL 1 JULY OS
(Qu)
a) $F=f \rightarrow(\rho, V, d, D)$

5 Variables, $3(M, L, T)$ dims
$\Rightarrow 5-3=2$ ar more $N-D$ gropes
4
b) $\frac{F}{\rho v^{2} d^{2}}=f_{n}\left(\frac{D}{d}\right) \quad$ abc.

Examiner's comments:
(i) Very easy question, done very well.
(ii) Many candidates gave non-hemenconal groups as:

$$
\frac{F}{\rho V^{2} d^{2}} \& \frac{F}{\rho V^{2} D^{2}}
$$

These are sill endorendant grove so still gained full monks.

JeR 1 JuLy os.

IA 2005 P1 SA
(Q5) (a) Perallel Streamisien \Rightarrow no transwerse proure grolient. 2
(b)

$$
\begin{align*}
& A_{1}=\frac{\pi}{4}(0.2)^{2}=0.031416 \mathrm{~m}^{2} \\
& v_{1}=A_{2} v_{2} / A_{1}=(0.1 / 0.2)^{2} \times 8=2 \mathrm{~m} / \mathrm{s} \tag{2}\\
& \dot{m}=\rho A_{2} v_{2}=1000 \times 0.007854 \times 8=62.83 \mathrm{~m} / \mathrm{s} \quad 2 \tag{2}
\end{align*}
$$

(C) $P_{1}+\frac{1}{2} \rho v_{1}^{2}=P_{2}+\frac{1}{2} \rho v_{2}^{2} \Rightarrow P_{1}=0+\frac{1}{2} \rho\left(v_{2}^{2}-v_{1}^{2}\right)=\frac{1}{2} \times 1000 \times\left(8^{2}-2^{2}\right)=30 \mathrm{kPa} 4$
(d)

$$
\begin{align*}
& \left.\begin{array}{l}
R \rightarrow P_{1} A_{1}-F_{x}-P_{2} A_{2} \cos 60^{\circ}=\dot{m} V_{2} \cos 60^{\circ}-\dot{m} V_{1} \\
R \uparrow \quad 0-F_{Y}-P_{2} A_{2} \sin 60^{\circ}=\dot{m} V_{2} \sin 60^{\circ}-0
\end{array}\right\} \begin{array}{l}
\text { USE } \\
\text { SAVSE } \\
\text { PRESSURE } .
\end{array} \\
& \left.\begin{array}{rl}
F_{x} & =\left(P_{1} A_{1}-P_{2} A_{2} \cos 60^{\circ}\right)+\dot{m}\left(V_{1}-V_{2} \cos 60^{\circ}\right) \\
& =(30000 \times 0.031416-0)+62.83\left(2-8 \times{ }^{1 / 2}\right) \\
& =942.48-125.66 \\
F_{x} & =816.82 \mathrm{~N}-1
\end{array}\right\} \tag{10}\\
& F_{y}=\left(-P_{2} A_{2} \sin 60^{\circ}\right)-\dot{m} V_{2} \sin 60^{\circ} \\
& =0-62.83 \times 8 \times \sqrt{3} / 2 \\
& F y=-435.30 \mathrm{~N}
\end{align*}
$$

Exammer's Comments:
(i) Very well Cone question (nobe mank ra-distombion)
(ii) Commen mistiake was bo omit $\underline{F}_{W A T E R}=-\underline{F}_{\text {NOZzLE }}$
(iii) Some cancledater did not appreciabe we if garge Preure. JfL 1 JuLyo5.
(Q6) $1 A$ 2005 P1 $S A$

$$
\begin{array}{ll}
Q-W=\Delta U=m C_{v} d T & W=p d V=m p d v Q=0 \\
\Rightarrow-p d v=c_{v} d T & P v=R T \quad \frac{d p}{p}+\frac{d v}{v}=\frac{d T}{T} \\
\Rightarrow-\frac{p d v}{P v}=\frac{C_{v}}{R} \frac{d T}{T} & \frac{d p}{p}-\frac{d T}{T}=\frac{c_{v}}{R} \frac{d T}{T} \\
\Rightarrow \frac{p \alpha T^{\frac{\gamma}{\gamma-1}}}{} \quad 6 &
\end{array}
$$

a)

$$
\begin{aligned}
& T_{2}=T_{1}\left(\frac{P_{2}}{P_{1}}\right)^{\frac{r-1}{\gamma}}=300(5)^{-4 / 1.4}=475.1 \mathrm{k} \\
& W_{c}=\dot{m} c_{p} \Delta T \Rightarrow \frac{W_{c}}{\dot{m}}=-1005(475.1-300)=-176.0 \mathrm{~kJ} / \mathrm{kg} \text { 鲁 }
\end{aligned}
$$

b) $\dot{Q}_{P H}=\dot{m} C_{P D T} \Rightarrow \frac{\dot{Q}_{P A}}{\dot{m}}=1005(600-475.1)=125.5 \mathrm{~kJ} / \mathrm{kp}$
c) $\dot{Q}_{1 N}=\dot{m} C_{p} \Delta T \Rightarrow \frac{\dot{Q}_{, N}}{\dot{m}}=1005(1200-600)=\frac{603 \mathrm{~kJ} / \mathrm{lg}}{4}$
d)

$$
\begin{aligned}
& \text { d) } \begin{array}{l}
T_{5}=T_{4}\left(\frac{P_{5}}{P_{4}}\right)^{\frac{k-1}{\gamma}}=1200\left(\frac{1}{5}\right)^{\frac{0.4}{1 \cdot 4}}=757.7 \mathrm{k} \\
W_{T}=m C_{P} D T \Rightarrow \frac{\dot{W}_{T}}{\dot{m}}=1005(1200-757.7)=\frac{444.5 \mathrm{~kJ} / \mathrm{tg}}{3} \\
\text { e) } \eta=\frac{W_{N G 7}}{\dot{Q}_{1 N}}=\frac{444.5-176.0}{603.0}=\frac{44.5 \%}{4}
\end{array} .=\frac{1}{4}
\end{aligned}
$$

Examaner's Commats:
(i) Many condedabes wesd C_{v} rather thon C_{p} !
(ii) Many gave encorrect units.

JPL 1 JULY OS.
$1 A 2005$ PI SA
QT)
a)

$$
\begin{aligned}
& P V=m R T \\
& m=\frac{P V}{R T}
\end{aligned}
$$

Helium : $M_{\text {He }}=\frac{2 \times 10^{5} \times 0.5}{2080 \times 300}=0.160 \mathrm{~kg} \quad 3$

$$
\begin{equation*}
\text { Oxygen : } \quad m_{O_{2}}=\frac{1 \times 10^{5} \times 0.3}{260 \times 400}=\underline{\underline{0.288 \mathrm{~kg}}} \tag{3}
\end{equation*}
$$

b) MIXTURE : MASS WEISHT $R \& C_{v}$

$$
\begin{aligned}
R_{\text {mix }} & =\frac{0.160 \times 2080+0.288 \times 0260}{0.160+0.288}=910 \mathrm{~J} / \mathrm{tgK} \\
C_{v \text { mix }} & =\frac{0.160 \times 3110+0.288 \times 660}{0.160+0.288}=1535 \mathrm{~J} / \mathrm{tgK}
\end{aligned}
$$

C) FINAL VOLUME $=0.8 \mathrm{~m}^{3} \quad$ FINAL MASS $=0.160+0.288=0.448 \mathrm{~kg}$

ENERGY CONSERVATION $Q-W=\Delta E=\Delta U \quad Q=W=0$

$$
\begin{aligned}
& M_{\text {mix }} C_{V \operatorname{Max}} T_{\text {Mix }}=M_{H e} C V_{H e} T_{H E}+M_{O_{2}} C_{V O 2} T_{O 2} \\
& T_{\text {Mix }}=\frac{0.160 \times{ }^{3110} \times 300+0.288 \times 660 \times 400}{0.448 \times 1535} \\
& T_{\text {Mix }}=327.6 \mathrm{~K}
\end{aligned}
$$

$$
P_{\text {Mix }}=\frac{M_{\text {mix }} R_{\text {mix }} T_{\text {mix }}}{V_{\text {mix }}}=\frac{0.448 \times 910 \times 327.6}{0.8}
$$

$$
P_{\text {mix }}=1.67 \Rightarrow 3
$$

d) System: $Q-W=\Delta U \quad W=30 \mathrm{~kJ}$

$$
\begin{array}{r}
-30 \times 10^{3}=m C_{\nu} \Delta T=0.448 \times 1535 \times\left(T_{\text {END }}-327.6\right) \\
T_{E N D}=327.6-30 \times 10^{3} /(0.448 \times 1535)=284.0 \mathrm{~K} \tag{3}\\
V_{E N D}=\frac{M_{\text {MaX }} R_{\text {mar }} T_{\text {EWI }}}{P_{E M P}}=\frac{0.448 \times 910 \times 284.0}{1 \times 105}=1.16 \mathrm{~m}^{3}
\end{array}
$$

Excomenars Commats:
(i) Many candistabes "refurad" bo wee energy consanation.

JPN 1 JULY OS.

Solutions

8 (a) velocities:

So total velocity is $\underline{8.67 \mathrm{~m} / \mathrm{s}}$ at a bearing of $\underline{34.8^{\circ}}$
(b) accelerations:

So total acceleration is $\underline{0.640 \mathrm{~m} / \mathrm{s}^{2}}$ at a bearing of $\underline{353.7^{\circ}}$ (or 6.3° West of North)

9 Let accelerating force be P, mass of sledge be m, and acceleration of sledge be a
Then $P=-\dot{m} V_{\text {relative }}=0.2 \times 30=\underline{6 \mathrm{~N}}$
(a) $P=m a$ and $m=4 \mathrm{~kg}$ at $t=0$, so $a=\frac{6}{4}=\underline{1.5 \mathrm{~m} / \mathrm{s}^{2}}$
(b) Maximum acceleration occurs when mass is at a minimum, i.e. just before the water runs out. This happens at $t=10 \mathrm{~s}$, when $m=2 \mathrm{~kg}$.
Then, $a=\frac{6}{2}=\underline{3 \mathrm{~m} / \mathrm{s}^{2}}$
(c) We can write $m \frac{d V}{d t}=-30 \frac{d m}{d t}$
whence $\quad \int_{0}^{V_{\text {final }}} d V=-30 \int_{m=4}^{m=2} \frac{d m}{m}$
giving $V_{\text {final }}=30 \log 2=\underline{20.8 \mathrm{~m} / \mathrm{s}}$
(Several candidates assumed that the acceleration would change linearly from $1.5 \mathrm{~m} / \mathrm{s}^{2}$ to $3 \mathrm{~m} / \mathrm{s}^{2}$ over the period of acceleration. This gives a final velocity for the sledge of $22.5 \mathrm{~m} / \mathrm{s}$ - which is a reasonable estimate, but not exactly correct.)

10 (a) Moment of momentum is conserved if there is no net moment about the axis: typically if all external forces pass though the axis, or are parallel to it.
(b) $I=\frac{M r^{2}}{2}+2 \times \frac{M}{12}\left(\frac{4 r^{2}}{12}+(2 r)^{2}\right)=M r^{2}\left(\frac{1}{2}+\frac{1}{18}+\frac{2}{3}\right)=\frac{11 M r^{2}}{9}$
(c) No net moment about the axis of rotation, so $\underline{I} \omega$ remains constant. Since I will decrease when the skater pulls her arms in, ω must increase: this means that $1 / 2(I \omega \times \omega)$ will increase. The additional K.E. comes from the work she does pulling her arms in towards her body, against the centrifugal force that is pulling them outwards.
(Many candidates answered part (a) correctly, but then failed to apply the same logic to part (c). Most of these candidates assumed that the kinetic energy would remain constant, as no work appeared to be involved; some thought that ω would remain constant.)

11 (a) Free body diagrams for the two parts of the model:
bottom:

Note that, since there is no mass, the downwards force on the top part must be f.
Equating forces for the top part gives: $k y+\lambda \dot{y}=f \quad$ whence $\quad y+\frac{\lambda}{k} \dot{y}=\frac{f}{k}$
This gives $\quad A=\frac{1}{k} \quad$ and $\quad T_{1}=\frac{\lambda}{k}$
(b) Considering the tension in the bottom spring gives:
$\frac{k}{2}(z-y)=f \quad$ whence $\quad y=z-\frac{2 f}{k} \quad$ and $\quad \dot{y}=\dot{z}-\frac{2 \dot{f}}{k}$
Substituting these into equation (1) gives $z-\frac{2 f}{k}+\frac{\lambda}{k}\left(\dot{z}-\frac{2 \dot{f}}{k}\right)=\frac{f}{k}$
whence $z+\frac{\lambda}{k} \dot{z}=\frac{3 f}{k}+\frac{2 \lambda \dot{f}}{k^{2}}=\frac{3}{k}\left(f+\frac{2 \lambda}{3 k} \dot{f}\right)$
giving $B=\frac{3}{k}, \quad T_{2}=\frac{\lambda}{k} \quad$ and $\quad T_{3}=\frac{2 \lambda}{3 k}$
(Note that the three time constants must all have the same dimensions!)
(a) Velocity diagram:

So $\mathrm{V}_{\mathrm{B}}=86.6 \times 5=\underline{433 \mathrm{~mm} / \mathrm{s} \text { upwards, }} \omega_{\text {ARMS }}=\frac{433}{1000}=\underline{0.433 \mathrm{rad} / \mathrm{s} \text { anticlockwise }}$ and $\omega_{\text {SPRINGS }}=\frac{12.9 \times 5}{\sqrt{1000^{2}+400^{2}}}=\underline{0.060 \mathrm{rad} / \mathrm{s} \text { anticlockwise }}$
(b) From the diagram, the C of G of the door has a velocity whose vertical component is $43.3 \times 5=217 \mathrm{~mm} / \mathrm{s}$ (point g on the diagram), and the springs are contracting at a rate of $32.2 \times 5=161 \mathrm{~mm} / \mathrm{s}$. We can therefore write a work equation:
$250 F+161 \times 650=217 \times 500$ whence $F=15.4 \mathrm{~N} \quad$ (all velocities in mm / s)
(c) The angular velocity of the door is $\frac{100 \times 5}{2000}=0.25 \mathrm{rad} / \mathrm{s}$ anticlockwise, so the hinges at B are opening at a rate of $(0.433-0.25) \mathrm{rad} / \mathrm{s}$. The extra force needed is then given by:

$$
\frac{250}{1000} \Delta F=20(0.433-0.25) \text { whence } \Delta F=14.6 \mathrm{~N}
$$

(Many candidates wrote $250 F=217 \times 500+161 \times 650$ in part (b), implying that the springs are opposing, rather than assisting, the automatic opener!)

13 (a) Let the current round the circuit be i (in a clockwise direction). Summing the voltages round the loop gives:
$e-R i-L \frac{d i}{d t}=v$
But we can also write $\quad \frac{i}{C}=\frac{d v}{d t} \quad$ whence $\quad i=C \dot{v} \quad$ and $\quad \frac{d i}{d t}=C \ddot{v}$
Eliminating i and its derivatives from equation (1) gives
$L C \ddot{v}+R C v+v=e \quad$ as required.
(b) Comparing the equation above with p. 6 of the Data Book, $v=y$ and $L C=\frac{1}{\omega_{n}^{2}}$ so $\omega_{n}=\frac{1}{\sqrt{L C}}=\frac{1}{\sqrt{10^{-3} \times 10^{-5}}}=10^{4}$

Also, $R C=\frac{2 \zeta}{\omega_{n}} \quad$ so $\quad \zeta=\frac{\omega_{n} R C}{2}=\frac{10^{4} \times 4 \times 10^{-5}}{2}=0.2$
From the graph, $v_{\max } \approx 1.53 e=\underline{76.5 \mathrm{~V}}$ when $w_{n} t \approx 3.2$, i.e. $t \approx 0.32 \mathrm{~ms}$
(c) This is "case (a)", on p. 8 of the Data Book, with $v=y$ and $L C=\frac{1}{\omega_{n}^{2}}$ The frequency is $2 \times 2 \pi \times 10^{3}$ so $\frac{\omega}{\omega_{n}}=1.257$ and $\zeta=0.2$ still, so $v \approx 1.3 e=\underline{65 \mathrm{~V}}$ and $\phi \approx-128^{\circ}$ from the graphs.
(d) The "locus of maxima" crosses the $|\mathrm{Y} / \mathrm{X}|=2$ line at $\frac{\omega}{\omega_{n}} \approx 0.93$, so we can use the "maximum response" formula and write $0.93=\sqrt{1-2 \zeta^{2}}$
whence $2 \zeta^{2}=1-0.93^{2}$ or $\zeta \approx 0.26$
(this is much easier than solving $\quad 2=\frac{1}{2 \zeta \sqrt{1-\zeta^{2}}}$!)
To achieve this higher damping ratio, we need a new total resistance R^{\prime} such that $R^{\prime} C=\frac{2 \times 0.26}{\omega_{n}}, \quad$ giving $R^{\prime}=\frac{2 \times 0.26}{\omega_{n} C}=\frac{0.52}{10^{-1}}=5.2$
So an extra 1.2Ω of resistance is required.

