Crib for Section A of 1A Paper 3 2006 Dr T J Flack June 2006

1. i) Open loop gain A is infinite.

Input resistance is infinite.

Output resistance is zero.

ii) Ideal op-amp so $v_- = v_+ = 0$ by virtual earth principle. Also no current flows into the inverting input since input resistance is infinite. Therefore:

$$v_i/600 + v_o/12000 = 0$$
 and so Gain = $v_o/v_i = -12000/600 = -20$

Input current $i_{in} = v_i/600$ Input resistance = $v_i/i_{in} = 600 \Omega$

Summing currents at the inverting input:

$$v_i$$
- $(-v_o/A)/R_1 + v_o$ - $(-v_o/A)/R_2 = 0$

$$v_o(R_2+R_1+AR_1) = -R_2Av_i$$

$$v_o/v_i = -AR_2/(R_2 + R_1 + AR_1)$$
 Check: As $A \rightarrow \infty$ $v_o/v_i \rightarrow -R_2/R_1$ as required.

Putting in numbers gives $v_o/v_i = -19.96$

$$i_{in} = (v_i - (-v_o/A))/R_1 = (v_i - 19.96v_i/10^4)/600 R_{in} = v_i/i_{in} = 600/(1-19.96 \times 10-4) = 601.2 \Omega$$

The mid-band voltage gain assumes that ω is low enough so that the 100 pF capacitor is an open-circuit. In this case all the series resistors in the circuit above may be lumped together to give 1600 Ω . Using earlier results: Mid-band voltage gain $v_o/v_i = -12000/1600 = -7.5$

For -3 dB frequency the voltage across the 100 pF capacitor needs to fall to $1/\sqrt{2}$ of its mid-band value (since the output voltage is proportional to the capacitor voltage). To obtain this voltage, convert left-hand side of circuit to Norton equivalent and use the fact that the inverting input of the op-amp is at 0 V by virtual earth principle:

The two 800 Ω resistors may be combined in parallel to give 400 Ω . Denoting R = 400 Ω and C = 100 pF the capacitor voltage, v_c , is:

$$v_c = (R \times 1/j\omega C)/(R+1/j\omega C) \times v_i/2R = R/(1+j\omega CR) \times v_i/2R = v_i/(2(1+j\omega CR))$$

-3dB frequency is found by equating the magnitudes of the real and imaginary parts of the denominator:

$$\omega CR = 1$$
 so $f_{3dB} = 1/(2\pi CR) = 3.98$ MHz

2. a) Thevenin's theorem: Any linear circuit, insofar as the load connected to it is concerned, may be represented as a voltage, V_{th} , in series with a resistance, R_{th} :

where V_{th} is the open-circuit voltage of the linear circuit, V_{OC} , and $R_{th} = V_{OC}/I_{SC}$ where I_{SC} is the short-circuit current of the linear circuit.

Norton's theorem: Any linear circuit, insofar as the load connected to it is concerned, may be represented as a current source, I_N , in parallel with a resistance R_N :

where $I_N = I_{SC}$ and $R_N = V_{OC}/I_{SC}$

b) Convert left-hand side of the circuit to Thevenin equivalent, and do the same to the right-hand side:

Now convert right-hand side to Norton to give a 1 A current source in parallel with a 3 Ω resistor, and combine this 1 A current source with the 2 A current source by adding (since they are in parallel):

Finally, convert the right-hand side of the circuit back to Thevenin to give:

i)
$$R = 13 \Omega I = (9-4)/20 = 0.25 A$$

ii)
$$R = 3 \Omega I = (9-4)/10 = 0.5 A$$

c) i) Find the total impedance as seen by the 240 V voltage source:

Impedance of the series combination of the capacitor, inductor and 1 Ω resistor is

$$1 + jwL + 1/jwC = 1 + j(3.14 - 6.77) = 1 - j3.63$$

Combine this in parallel with the 1 Ω resistor and add the series 1 Ω resistor:

$$Z = 1 + 1 \times (1 - j3.63)/(1 + 1 - j3.63) = 1.884 - j 0.211$$

Finally $I = 240/Z = 126.6 \angle +6.4^{\circ}$

Examiner's comment: A common mistake here was to convert to Thevenin and find the current. This gives the current flowing in the inductor/capacitor ie the 'load' current, but not the supply current as asked for.

ii) Convert left-hand side of circuit to Thevenin:

ii) Resonant frequency $\omega_0 = 1/\sqrt{LC}$ and $f_0 = \omega_0/2\pi$ giving 73.4 Hz

At resonance the impedance of the capacitor and inductor cancel out so that the only impedance is the 1.5 Ω of resistance. Therefore:

$$I = 120/1.5 = 80 A \angle 0$$

Capacitor voltage V_c = $X_C \times I$ where X_C is the reactance of the capacitor = $80/\omega C$ = 369 V \angle -90

$$Q = \omega_0 L/R = 4.61/1.5 = 3.07$$

3. i) For $V_{GS} = 4 \text{ V}$ by potential divider:

$$10000 \times 20/(10000 + R_1) = 4$$
 giving $R_1 = 40 \text{ k}\Omega$

For $V_{DS} = 10 \text{ V}$, 10 V must be dropped across R_2 with 5 mA flowing through it:

$$10/R_2 = 0.005$$
 giving $R_2 = 2 \text{ k}\Omega$

ii) To construct small-signal circuit valid at mid-band, treat all capacitors as short circuits and short-circuit all points at fixed voltage ie 20 V supply rail to ground:

$$v_{gs} = v_i$$

$$v_o = g_m v_{gs} r_d R_2 / (r_d + R_2)$$
 giving $v_o / v_i = -9.375$

- i) Load referred to primary = $(N_1/N_2)^2 Z_L = 100 (0.1+j0.1) = (10 + j 10) \Omega$
- ii) $I_L' = 240/(13.5 + j 15.5) = 11.7 A$ in magnitude.

This is the load current referred to the primary.

$$I_L = 10 I_L' = 117 A$$
 in magnitude.

Examiner's comment: A common mistake here was to forget to calculate the actual load current as opposed to the load current referred to the primary.

iii)
$$P_{LOAD} = 11.7^2 \times 10 = 1369 \text{ W}$$

$$P_{LOSS} = 11.7^2 \times (2 + 1.5) = 479 \text{ W}$$

Therefore input power, $P_{IN} = P_{LOAD} + P_{LOSS} = 1848 \text{ W}$

Efficiency =
$$P_{LOAD}/P_{IN} = 1369/1848 = 74.1 \%$$

5. i) Total impedance, $Z_T = 0.5 + j2 + 10 + j5 = (10.5 + j 7) \Omega$

I = 240/(10.5+j7) = 19 A in magnitude

$$P_{LOAD} = 19^2 \times 10 = 3.62 \text{ kW}$$
 $Q_{LOAD} = 19^2 \times 5 = 1.81 \text{ kVAr}$

ii) Need to find total reactive power supplied

$$Q_{TOTAL} = 19^2 \times 7 = 2.53 \text{ kVAr}$$

Capacitor reactive power must equal total reactive power to correct power factor to unity:

 $240^2/X_C = 2530$ where X_C is the capacitor reactance at the supply frequency of 50 Hz

$$X_C = 22.75~\Omega = 1/(100\pi C)~giving~C = 140~\mu F$$

Engineering Tripos Part 1A 2006 - Paper 3 - Sections B and C answers

A R L Travis

q 6

C	A=00_	01_	11_	10
B=00	00001	00001	00001	00001
01	00000	00001	00011	00010
11	00000	00001 11011		01000
10	00000	00001	01001	00100
C_4	A=00	01	11	10
$\frac{C_4}{B=00}$	0	0	0	0
<u> </u>	0	0	0	0
11	0	0	1	$\frac{}{}$
	0	0	0	$\frac{}{}$
10	0	1 0	0	0
C_3	A=00	01	11	10
B=00	0	0	0	0
01	0	0	0	0
11	0	0	1	1
10	0	0	1	0
•	A00	1 01	1 11	1.0
C_2	A=00	01	11	10
B=00	0	0	0	0
B=00 01	0	0	0	0
B=00 01 11	0 0 0	0 0	0 0	0 0 0
B=00 01	0	0	0	0
B=00 01 11	0 0 0	0 0	0 0	0 0
B=00 01 11 10	0 0 0	0 0 0	0 0 0	0 0 0
B=00 01 11 10 C ₁	0 0 0 0 0 A=00	0 0 0 0 0	0 0 0 0	0 0 0 1
B=00 01 11 10 C ₁ B=00	0 0 0 0 A=00	0 0 0 0 0 01	0 0 0 0 11 0	0 0 0 1 1 10
B=00 01 11 10 C ₁ B=00 01	0 0 0 0 0 A=00 0	0 0 0 0 0 01 0	0 0 0 0 11 0	0 0 0 1 1 10 0
B=00 01 11 10 C ₁ B=00 01 11 10	0 0 0 0 0 A=00 0 0 0	0 0 0 0 0 0 0 0 0	0 0 0 0 11 0 1 1	0 0 0 1 1 10 0 1 0
B=00 01 11 10 C ₁ B=00 01 11 10 C ₀	0 0 0 0 0 A=00 0 0 0 0 A=00	0 0 0 0 0 1 0 0 0 0 0	0 0 0 0 11 0 1 0	0 0 0 1 1 10 0 1 0 0
B=00 01 11 10 C ₁ B=00 01 11 10 C ₀ B=00	0 0 0 0 0 4=00 0 0 0 0 0	0 0 0 0 0 1 0 0 0 0 0	0 0 0 0 11 0 1 1 0	0 0 0 1 1 10 0 1 0 10
B=00 01 11 10 C ₁ B=00 01 11 10 C ₀ B=00 01	0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 11 0 11 1 0	0 0 0 1 10 0 1 0 0 10 10
B=00 01 11 10 C ₁ B=00 01 11 10 C ₀ B=00	0 0 0 0 0 4=00 0 0 0 0 0	0 0 0 0 0 1 0 0 0 0 0	0 0 0 0 11 0 1 1 0	0 0 0 1 1 10 0 1 0 10

So:

$$C_{4} = A_{1}A_{0}B_{1}B_{0},$$

$$C_{3} = A_{1}A_{0}B_{1} + A_{1}B_{1}B_{0}$$

$$C_{2} = A_{1}\overline{A}_{0}B_{1}\overline{B}_{0}$$

$$C_{1} = A_{1}A_{0}B_{0} + A_{1}\overline{B}_{1}B_{0}$$

$$C_{0} = A_{0} + \overline{B}_{1}\overline{B}_{0}$$

(b)

$$C_{4} = \overline{\overline{A_{1}A_{0}B_{1}B_{0}}}$$

$$C_{3} = \overline{\overline{A_{1}A_{0}B_{1}.A_{1}B_{1}B_{0}}}$$

$$C_{2} = \overline{\overline{A_{1}\overline{A_{0}B_{1}\overline{B_{0}}}}}$$

$$C_{1} = A_{1}A_{0}B_{0} + A_{1}\overline{B_{1}B_{0}} = \overline{\overline{\overline{A_{1}+\overline{A_{0}+\overline{B_{0}}}}} + \overline{\overline{A_{1}+B_{1}+\overline{B_{0}}}}}$$

$$C_{0} = A_{0} + \overline{B_{1}}\overline{B_{0}} = \overline{\overline{A_{0}+\overline{B_{1}+\overline{B_{0}}}}}$$

There are 6 states so 3 bistables are required to implement the system

q 8 (i)
$$A \leftarrow \#FC = 11111100B$$

 $B \leftarrow \#3D = 00111101B$
 $A \leftarrow sum = 00111001B + carry$

The carry into bit 7 equals the carry out of bit 7, so V is not set There has been a carry so C is set
The result is not a negative number so N is not set
The result is not zero so Z is not set
The contents of B are 3DH
The contents of A are 00111001B

(ii) Sum of clock cycles per instruction = 2+2+2+2+2=10 so code takes 1 microsecond.

C	$X_1X_0=00$	_01	11	10
$X_3X_2=00$	X	1	0	0
01	0	1	0	$\begin{bmatrix} 1 \end{bmatrix}$
11	1	1	X	
10	1	1	1	0

$$C=\overline{X}_1X_0+X_3\overline{X}_1+X_3X_0+X_2X_1\overline{X}_0$$

q 10 By symmetry, around any circle concentric with the annuliu, H is constant. Ampère's Law states that $NI = H2\pi r$

Now $\mathbf{B} = \mu_r \, \mu_o \mathbf{H}$ so:

$$\mathbf{B} = \mu_r \mu_o \frac{NI}{2\pi r} \mathbf{e}_{\theta}$$

where e_{θ} is the tangential unit vector. So:

(a)
$$\mathbf{B} = 100 \times 4\pi \times 10^{-7} \frac{100 \times 1}{2\pi r} \mathbf{e}_{\theta}$$

(b)
$$\mathbf{B} = 4\pi \times 10^{-7} \frac{100 \times 1}{2\pi r} \mathbf{e}_{\theta} = \frac{2 \times 10^{-5}}{r} \mathbf{e}_{\theta}$$

$$\phi = \int_{S} \mathbf{B.dA} = \int_{r_{1}}^{r_{2}} \left(\frac{2 \times 10^{-5}}{r} \mathbf{e}_{\theta} \right) \cdot (t dr \mathbf{e}_{\theta}) = 2 \times 10^{-5} t \int_{r_{1}}^{r_{2}} \frac{dr}{r} = 2 \times 10^{-5} t \ln \frac{r^{2}}{r^{1}} = 2 \times 10^{-8} \ln \frac{30}{20}$$
$$= 8.1 \times 10^{-9} \text{ Wb}$$

(c)
$$L = \phi/I = 8.1 \times 10^{-9} H$$

(d) The relationship between B and H is non-linear in both Permalloy and Columax

q 11
$$Q = C_1 V_1 = C_2 V_2$$
 so:

$$V_2 = \frac{C_1}{C_2} V_1$$
$$= \frac{r_1}{r_2} V_1$$
$$= 200 \text{ kV}$$

$$E_2 - E_1 = \frac{1}{2}(C_2V_2^2 - C_2V_1^2) = \frac{1}{2}4\pi\varepsilon_0(r_2V_2^2 - r_1V_1^2) = 2\pi\varepsilon_0(\frac{1}{2}\times4\times10^9 - 10^9) = 2\pi\varepsilon_0\times10^9$$

q 12 By symmetry, the direction of the electric flux must be radial.

According to Gauss:

$$D4\pi r^{2} = \int ar \times 4\pi r^{2} dr$$

$$D4\pi r^{2} = \pi ar^{4}$$

$$D = ar^{2}/4$$

Energy stored within a small volume,
$$V = \int_{V} \mathbf{B.dH} = \frac{1}{2} \mu_{r} \mu_{0} H^{2}$$

Energy stored within one annulus = $\frac{1}{2}\mu_r\mu_0 \times 2\pi \times t \times \int_{r_1}^{r_2} H^2 dr$

$$= \frac{\mu_r \mu_0 2\pi t}{2} \times \left(\frac{NI}{2\pi}\right)^2 \times \int_{r_1}^{r_2} \frac{1}{r^2} dr$$

$$= \frac{\mu_r \mu_0 t N^2 I^2}{4\pi} \times \left(\frac{1}{r_2^3} - \frac{1}{r_1^3}\right)$$