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1. The transformation R is readily determined by considering its action on the principal
unit vectors.
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By inspection, the y axis is unchanged by this transformation. One eigenvector of R
is therefore [0 1 0]7 with a corresponding eigenvalue of 1. [10]

Examiner’s remarks: This question asked the candidates to “find the 3 x 3 matrix
R which represents a rotation of 90° about the y axis followed by a reflection in the
x = 0 plane”. There were many sign mistakes and very few candidates thought to find
R in one step. Instead, they derived separate rotation and reflection matrices and
then multiplied them together, sometimes in the wrong order. Despite the careful
wording of the question, several candidates thought that the answer was a 2 X 2
matrix. On a brighter note, geometrical interpretation of the eigenvectors was good,
with many candidates successfully writing down one eigenvector and eigenvalue of R.

2. The unit eigenvectors are (1/4/2)[1 1]7 and (1/+/2)[1 —1]*. Using the formula in the
Mathematics Data Book, A can be constructed from its eigenvectors and eigenvalues

as follows:
1 1 1 2 01 (1 1 1 5 —1
_ T _ i = —
e R FE T | By
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A represents a stretch of 2 in the direction [1 1]7 and a stretch of 3 in the direction
1 —1]7.

Examiner’s remarks: This question asked candidates to construct a 2 x 2 matrix
from its (orthogonal) eigenvectors and eigenvalues, and to comment on the geomet-
rical transformation it represents. Remarkably few candidates used the data book
formula A = UAU7, the vast majority working from first principles but generally
getting the right answer nevertheless. Not many candidates were able to interpret
the transformation as a stretch along the eigenvectors.

. The characteristic equation is

—1++5

MN=1- A X4+ A-—1=0s )= >

The general solution is therefore 2, = A [1(v/5 — 1)]n + B|i(~v5 - 1)]n By in-

spection, A = 1 and B = 0 satisfies the initial conditions. The solution is therefore
n

zn = [$(v/E-1)]"

Examiner’s remarks: This question asked the candidates to solve an uncompli-

cated second order linear difference equation with friendly boundary values. Re-
sponses were very good, with most candidates scoring full marks.

. (a) The auxiliary equation is
M+(B+a)d+3a=0eA+3)(A+a)=0
So, assuming a # 3 (repeated root), the complementary function is
y = Ae™*® 4 Be ™

Assuming a # 2 (complementary function the same as the right hand side), the
particular integral is y = C'e~2%. Substitute into the differential equation to find C:

ACe™ 4+ —2(3+ a)Ce™™ 4+ 3aCe™ = e & —20 + +aC =1
1

s C = p—

The general solution is therefore

—2x

e
:A—3z Be™%®
Y e + be +a-2

The boundary conditions tell us that

0 = A+B+
a—2
2
0 = -34—aB—- ——
a—2
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Multiplying the top equation by 3 and adding the bottom one:

1 1
0=B-a)B+—B=—"———
B-a)B+ 3 (@=2)(a=3)
Substituting into the top equation:
1 1 ~l—a+3 —(a — 2) 1

A:’(a—z)(a—g)‘a—f @—-2a—3) (@-2)(a-3) 3-a

The solution satisfying the boundary conditions is therefore
6—3.7: e—ax e—2ac

3¢ @—2)a-3) Ta-2 [12]

y:

(b) When a = 2, the first term in the above expression is simply e~3%. For the other
terms, we substitute € = a — 2 to get

—(e+2)z —2z —(e+2)z(1 _ -1 —2z
— —3z € e _ =3z __ € (1 6) e
vy = ¢ +6(6—1)+ e ¢ € + €
—2z ,—€x 1 O 2 -2z -2z
= ew_Z ° (Lt+et (e))+e =3 S [e‘“(1+e+0(62))~1]
€ € €
—2z
= ¢ _C —[(1 -+ O(@)(1+e+0(c) -1
—2x
= e C [(1 ~ex+O(?) +¢) — 1] =3 — e (1 —z + O(e))

€
= €3 4 (z —1)e™* in the limit as e = 0

[12]
(c) Instead of taking the limit, we could have returned to the particular integral in
(a) and tried a function of the form Cze=2*. For the case a = 3, we could take a
limit as in (b), or return to (a) and change the complementary function to
y=(A+ Bx)e™ [6]

Examiner’s remarks: This question asked the candidates to solve the differential
equation %% +(3+ a)% +3ay = e~?®, The question initially asked the candidates to
assume a # 2 (so the complementary function has nothing in common with the right
hand side) and a # 3 (so the auxiliary equation does not have repeated roots). Almost
everyone derived the auxiliary equation A? + (3 + a)A+ 3a = 0 but then distressingly
few spotted the obvious factorisation, launching instead into the standard formula
for solving a quadratic equation. Nevertheless, since the candidates knew where
they were going in part (a), which was a “show that” question, algebraic slips were
corrected and almost everyone scored full marks. In part (b), candidates were asked
to find the solution when a = 2 by writing ¢ = a — 2 and taking the limit as
¢ — 0. Responses were very poor, with only a handful of students finding the right
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answer using power series. Most instead tried to use L’Hopital’s rule, which can
produce the right answer (a few succeeded) but of course you first have to rewrite the
indeterminate part of the expression as a single numerator over a single denominator,
with both numerator and denominator tending to zero in the limit: most candidates
seemed unaware of this prerequisite. In part (c), candidates were asked how else they
might find the solution when a = 2 or a = 3. Only a few suggested trying a different
particular integral or complementary function, with most instead suggesting power
series in place of L’Hépital’s rule, or vice versa.

. (a) (i) The first equation defines the locus of points z in the Argand plane equidistant
from 5 and —i. It is therefore the solid straight line in the diagram below. The second
equation defines the locus of points z in the Argand plane which lie a distance a from
the origin. It is therefore a circle of radius a, centred at the origin. One such circle
is shown in the diagram below.

Im

(ii) The solutions to the simultaneous equations are at the points where the line and
circle intersect. For the specific value of a shown above, there is just one solution, at
the point where the line passes closest to the origin. For smaller a there will be no
solutions, for larger a there will be two solutions.

So the value of a which gives precisely one solution is the shortest distance from the
line to the origin. To find this distance, we need to find one point p on the line and
the unit normal 1 to the line. The shortest distance is then p.n.

The point A, midway between 5 and —i, is one point on the line. Its coordinates are
0.5(5 — 7). By inspection of the diagram, the normal to the line is in the direction
5 + 4. The shortest distance from the line to the origin is therefore

1 [5] 1] 5] _ 12
v2e [ 1] 2] -1 V26
So the system has precisely one solution when a = 12/1/26.
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(iii) For this value of a, the solution is at the point where the line passes closest to
the origin, which is when

6
541)=—(5+1)
- 728 750+ = I
Note that an algebraic approach to (ii) and (iil) is feasible, but the geometric approach
is far quicker.

(b) Let z = z + 1y.

sinh(z +4iy) = sinhaxcosy +icoshzsiny =2
& sinhzcosy = 2 and coshzsiny =0

The second equation is the more informative, since cosh z is never zero, so siny = 0,
which implies y = n7 and cosy = (—1)". The first equation then tells us that
z = (—1)"sinh ™' 2. We conclude that if sinh z = 2, z = (—~1)"sinh™* 2 + n73.

Examiner’s remarks: Part (a) asked the candidates to sketch |z — 5| = |z + 4| and
|2| = @ in the Argand plane, determine the value of a for which the equations have
precisely one solution (ie. when the line is tangent to the circle) and then solve the
equations. The question was structured to suggest a geometrical approach, and it was
pleasing to see many candidates taking the hint and succeeding. Others took the long,
algebraic route, with a reduced success rate caused by algebraic slips. There were
some poor solutions, with quite a few candidates thinking that [z — 5| = |2+ 4| is an
ellipse and others thinking that |z| = a is a circle of radius /a. In part (b), candidates
were asked to solve sinh z = 2. Those who approached the problem by trigonometric
expansion generally did well, though there was endemic carelessness in the details of
the answer: z = (—1)"sinh™ 2 + n7i is not the same as z = £sinh™* 2+ ni. Those
who expressed sinh z in terms of exponentials fared less well. They generally got as
far as z = In(2 £ v/5) and then either left this as the answer, or stated that you can’t
have a log of a negative number, or (rarely) expressed 2 + v/5 in complex polar form
and proceeded to the correct answer.

. The impulse response is
dh( )

— 26—2t

g(t) =
By convolution, the response to z(t) is therefore
t ¢
y(t) = / z(r)g(t — T)dr = 2/ e 32t dr
0 0
¢ ¢
= 26_2t/ e Tdr = 2% [—e_T] =2e (1 —e™)
0 0
Examiner’s remarks: This question asked the candidates to compute a convolution

for a system, given the system’s step response. Almost all candidates were able to
do this correctly, with a large number of perfect responses.
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7. First take the partial derivatives with respect to x and y:

% = y(2_y)
3—2 = (+a)-y+2-y) =201 +2)1-y)

For a stationary point, the z derivative tells us that y = 0 or y = 2. For y = 0,
the y derivative tells is that £ = —1. For y = 2, the y derivative again tells is that
z = —1. The stationary points are therefore (—1,0) and (—1,2). Note that the
stationary points are located at the intersections of the z = 0 contours. While this
is a sufficient condition for a stationary point, it is not a necessary condition. It is
therefore important to evaluate the partial derivatives and check that there are no
further stationary points. [10]

Examiner’s remarks: This question asked the candidates to compute the sta-
tionary points of a function of two variables. Most candidates did this correctly,
although several found the stationary points by considering the intersections of the
z = 0 contours without checking for further stationary points by computing the par-
tial derivatives. Other candidates failed to realise that both partial derivatives had
to be zero simultaneously.

8. Differentiating x(t), we obtain

e ) -1 —2<t<0
‘”(t)‘{ 1 0<t<?

This is the square wave on page 24 of the Electrical and Information Data Book, with
period T' = 4. Hence

4 & sin(2n — 1)Z¢
") = = 2
z(t) 7rnz=:1 2n—1

Integrating, we get
8 & cos(2n—1)%t
W0=1-3 2 paoie
n=1 ( n )
where the constant of integration (1) is the mean value of the triangular wave z(t)
given in the question. [10]

Examiner’s remarks: This question asked candidates to compute the Fourier series
of a triangular wave that differed in phase and mean value from the example in the
data book. Large numbers of candidates had difficulty with this question. Errors
included: thinking that the function given was in fact a square wave rather than a
triangular wave; thinking that the function was the same as the example triangular
wave given in the data book; and ignoring the data book and attempting to compute
the series from first principles, with many opportunities for errors.



9. (a) To find the impulse response g(t), we need to solve the differential equation

with boundary values ¢g(0_) = ¢(0_) = 0. Taking the Laplace transform of both
sides, we get

SPG+4sG+3G = 1 G(+3)(s+1)=1
1 C—1/2 1)2

G = -
< (s+3)(s+1) s+3+s+1

Looking up the inverse Laplace transforms in the Mathematics Data Book, we find

{0 t<0
g(t) = { Let—e™) t>0 [10]

(b) The output is given by the convolution integral

y(®) = [ oot —7)ar

Taking Laplace transforms of both sides, and using the convolution property in the
Mathematics Data Book, we get Y (s) = X(s)G(s). We've already found G(s) in (a),
and for x(t) = sint we can look up X(s) =1/(s*+1). So

~ 1 (=12 12\ 1 1 1
Y(s)—X(s)G(S)_82+1(5+3+5+1>_2(s2+1)<s+1~s+3>

To find y(t), we first need to decompose Y (s) into simple terms using partial fractions.
Starting with the first term in Y'(s),

(s24+1)(s+1) s+1 s2+1 (s2+1)(s+1)

1/2 A Bs+C (A+B)s*+(B+C)s+A+C

Comparing the numerators, we get the following three equations
A+B=0,B+C=0,A+C=1/2

which are readily solved to yield A = 1/4, B = —1/4 and C' = 1/4. Now for the
second term in Y'(s),

—~1/2 ! +Bs+C’_(A+B)s2+(3B+C)s+A+SC
(s2+1)(s+3) s+3 s2+1 (s2+1)(s+3)

Comparing the numerators, we get the following three equations

A+B=0,3B+C=0, A+3C=-1/2
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10.

which are readily solved to yield A = —1/20, B = 1/20 and C = —3/20. Bringing
the two terms together, we get

I i I "%, %5,
Y(s) = + + + +
) = STt eI T e r1 s T 21 T rn
1 1 1 1g
_ 4 20 10 5

s+1 s+3 $£2+1 241
Looking up the inverse Laplace transforms, we get

1 1 1 1
= et Z o3 T ng = >
y(t) 1° 55°¢ +1Os1nt 5cost (t>0)
(c) For an initially quiescent second order system driven by a finite input, we should
find y(0) = ¢(0) = 0. From our answer in (b), we get

So the answer in (b) does indeed have the expected boundary values at ¢ = 0.

Examiner’s remarks: This question asked candidates to compute the impulse
response of a system defined in terms of a second order linear differential equation,
and to then compute the response to a sine wave gated at £ = 0. Almost all candidates
were able to correctly determine the impulse response in part (a), although many took
a circuitous route via the step response. A very large number of candidates were able
to work their way through the somewhat tricky set of partial fractions in part (b)
and went on to correctly provide the four components of the answer. Candidates
were also able to compute the value and derivative in part (¢) and indicate that these
should be zero, with several indicating surprise that they had successfully handled
the algebraic complexity in part (b)!

(a) The first player out of the hat has a choice of 7 opponents. The first remaining
player has a choice of 5 opponents, the next has a choice of 3, and this leaves one
pair with no choice. The number of possible pairings is therefore 7 x 5 x 3 = 105.

(b) (i) The probability that A wins the rally on A’s first shot (the serve) is p. To
win on A’s second shot, A must not win on the serve and B must not win on the
return. The probability is therefore (1 —p){1 — ¢)g. Similarly, the probability that A
wins on A’s third shot is (1 — p)(1 — ¢)(1 — ¢)(1 — q)q. For n > 1, it is clear that the
expressions have a common term (1 —p)q and are expanding by a multiple of (1 — g)?
each time. Therefore,

P(A wins rally on A’s n'® shot) = { ]é)l - p)g(l — ¢)3 Z : 1

For B to win on B’s first shot, A must not win the serve. The probability is therefore
(1 —p)g. For B to win on B’s second shot, A must not win on the serve, B must not
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win on the return and A must not win on the next shot. The probability is therefore
(1 —p)(1 —q)(1 —q)g. Again, it is clear that the expressions have a common term
(1 — p)q and are expanding by a multiple of (1 — g)? each time. Therefore,

P(B wins rally on B’s n*® shot) = (1 — p)q(1 — ¢)?"2

(ii) The B expression is the simplest to work with, since it doesn’t have a special case
for n = 1. The probability b that B wins the rally is given by

b= P(B wins rally on B’s n't shot)

n=1

This is the sum to infinity of a geometric series, with first term (1 — p)g and common
ratio (1 — g)?. Therefore

po (=pg _(-plg_1-p
1-(1-¢? 29—¢* 2-—¢
Given that a and b must sum to one, we have
l-p 2-q—-1+4+p 1+4+p—q

=1— = =
“ 2—gq 2—q 2—q

When p = 1, A should always win the rally on the serve itself. The above expressions
give b = 0 and a = 1, as expected. When p = 0 and ¢ = 1, B should always win the
rally on the return of serve. The above expressions give b = 1 and a = 0, as expected.

(ili) For a to equal b, we require

l-p l+4+p—gq
2—q 2—gq

S -—p=p—q&Sqg=2p

So, for each player to have an equal chance of winning the rally, A must have such a
weak serve that the chances of winning the rally on a return shot are twice those of
winning the rally on the serve itself. This is because A has the advantage of going
first: to make up for this advantage, A’s first shot, the serve, must be weak. In fact,
for most players with a decent serve p > ¢, demonstrating how strongly the odds are
stacked in favour of the server.

Examiner’s remarks: This question asked candidates to solve a set of combinato-
rial and probability questions. Part (a) involved a combinatorial calculation which
the vast majority of candidates were unable to compute correctly. Part (b)(i) asked
candidates to derive given expressions for two probability series: this was well han-
dled by the vast majority. Part (b)(ii) then asked candidates to sum these series.
While many were able to do this correctly, a large number found this difficult with
many unable even to spot that a sum over the series was required. Finally, in part
(b)(iii) candidates were asked to perform a calculation on the expressions given by
these sums. This was only really attempted in a plausible manner by those who had
completed part (b)(ii), and then there were a significant number of algebraic errors.
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11.

12.

The pattern of function calls is as follows.

term (4)
o Tm
term'({ term (1) term (1) term (0)
term)({ \te;n (o)}

There are O(n) levels of recursion, and the number of function calls doubles at each
level. The complexity is therefore O(2").

Examiner’s remarks: This question tested understanding of recursive function
calling and algorithmic complexity. Operational understanding of the code was rea-
sonable even amongst those who didn’t answer the specific question well. Few book-
work definitions of complexity were offered; there were many guessed, unjustified
answers.

A float requires 32 bits, or 4 bytes, of storage. Each point is two float’s, or 8
bytes. Each line is 100 point’s, or 800 bytes. Each graph is 5 1ine’s, or 4000 bytes.
The variable g, which is of type graph, therefore requires 4000 bytes of storage. The
x coordinate of the eighth point on the third line of g would be accessed using the
notation g.lines[2].points[7].x (remember array indices run from 0 to n-1, not
1 to n).

Examiner’s remarks: This question presented a nested data structure involving
arrays, testing understanding of memory requirements and access methods. Concep-
tual difficulties with nested components were evident, as were revision deficiencies
regarding bits, bytes, size of floats and zero-based indexing.

Andrew Gee
June 2006
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