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1 (short) Water flows through a rectangular channel of uniform width with an
upstream depth and speed of & and V respectively. A hump of height & is placed on
the channel bed over its entire width. The free surface then has a d1p of depth d centred
over the hump (Fig. 1). The velocity may be taken as uniform at ea(_;p"cross-section of the
channel. w

(a) By applying Bernoulli’s equation to the free-surface s@feamline show that the

fluid speed above the bump, Vi, is given by

V2 =v242gd.

State any assumptions that you make.

(b) Find an independent expression relating Vi to V and hence show that, if § =d,

v2 v2 2d\?
—=—+1|(1-=
2gd 2gd h

Fig. 1

5]
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2 (short) A jet of water is deflected by a stationary bucket as shown in Fig. 2. The
speed of the fluid leaving the nozzle, as well as that leaving the bucket, is V and the flow
may be treated as inviscid. You may neglect changes in potential energy.

Fig. 2

(a) Why is the fluid speed leaving the nozzle equal to that leaving the bucket? 3]
(b) Show that the force exerted on the bucket by the jet is
F =mV 1+ cosf]

[7]

where i1 is the mass flow rate and B is the angle shown in Fig. 2.

(TURN OVER
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3 (short) A perfect gas enters a compressor at a pressure of p; = 10°Nm2 a
temperature of 77 = 290 K, and a velocity of 18 m s~! through an inlet area of 0.1 m?.
At the exit the temperature is 370 K and the velocity is 6 m s~1. Heat transfer to the
surroundings, as well as changes in potential energy, may be neglected. The gas has
a specific heat and gas constant of ¢p = 103 1 kg"lK_'1 and R =2871] kg'1 K1

respectively.

(a) Calculate the density at the inlet and the mass flow rate through the

COmpressor.

(b) Find the compressor power.

4 (short) The rate of heat transfer through a furnace wall of area A is determined in
part by convection at the inner and outer surfaces and in part by conduction through the
wall. The surface heat transfer coefficient is & = 20 Wm—2 K1, the wall thickness is
t = 0.1m, and the thermal conductivity of the wall material A = 1.0 Wm~! K1,

Find an expression for the overall thermal resistance and hence show that the heat

transfer rate per unit area is given by
T —-T,
AT

where Ty is the temperature inside the furnace and 7 the ambient temperature outside.

[4]

[10]



5 (long)

(a) A perfect gas expands at constant temperature in a cylinder from state ’a’ to
state ’b’. Starting from the expression

W=/Fdx

for the work done by a force F moving in the direction x, show that the work done by the

gas on the piStOl’l iS
ava V .

How much heat is transferred to or from the gas during the expansion? . [9]

(b) A perfect gas of mass m undergoes a closed cycle consisting of:

process 1 - 2:  pressure rise at constant volume from pq to pp
process 2 - 3:  constant temperature expansion from pj to p3 = pg
process 3 - 1: constant pressure compression back to state 1.
(i) Sketch the process on a pV diagram and show that 7 = rT7 and
V3 = rV; where r is the pressure ratio, r = p3/p1. [6]

(i) Calculate the heat transfer during each part of the cycle expressing the
results in terms of r, m, R, T; and ¢, where R is the gas constant and c, the

specific heat at constant volume. You may use the result of part (a). [8]
(iii) Show that the cycle efficiency is [7]
rinr—(r—1)

n= rinr+(r—1)cy/R

(TURN OVER



6 (long)

(a) In a steady, two-dimensional flow the components of acceleration of a fluid
particle parallel and perpendicular to a streamline are
v V2

a//::Vg , a] =——

where V is the fluid speed, R is the radius of curvature of the streamline, s is a curvilinear
coordinate measured along the streamline, and @ is measured in a direction away from
the centre of curvature of the streamline.

(i) Using Fig. 3, show that the net pressure force acting on a small
rectangular element of fluid, §s6néw, has components

0 d
Fy = ——a—gﬁsb'an , F| = ——:9%5s5n6w

where n is a coordinate normal to the streamline, pointing away from the
centre of curvature.

(ii)) By applying Newton’s second law to the small rectangular fluid element
shown in Fig. 3, show that the pressure gradients parallel and perpendicular
to the streamline are

dp av ap v2
ua- P W PE
where p is the density. You may neglect gravitational and viscous forces.

@(iii) Confirm that, by integrating the first of the expressions in (ii) above, we
obtain Bernoulli’s equation in the absence of gravity.

(cont.

(6]

[6]

[4]
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(b) A cylindrical container rotates with constant angular velocity, @, and is
partially filled with a liquid. The fluid rotates as a rigid body at the same rate as the
container and it is observed that its free surface is curved as shown in Fig. 4. The depth,
h, of the liquid is therefore a function of radius r. We wish to determine the shape of the

free surface, h(r).
z

O]

\_

h()

Fig. 4
(i) The surface shape is found to beindependent of p, and so we have

h“hozF(&w;")

where A is the depth of fluid at » = 0, g is the acceleration due to gravity and
F is some unknown function. Use dimensional analysis to show that

h—ho =G(£°_2_’)
r g

for some function G. : [6]

(i) Verify that the radial variation in pressure is governed by

dp o
-gr—-—pa)r

and hence show that the pressure distribution on the base of the container
takes the form
_ 1 52
where pg is the pressure at the centre. (4]
(iii) Noting that there is no vertical acceleration in the fluid, confirm that
w2r2
2¢

h(r)—hg =
[4]



7 . (short)

(a) Find from first principles the mass moment of inertia of a disc with uniformly
distributed mass m and radius a about an axis that passes through the centre of mass and
is perpendicular to the plane of the disc.

(b) The disc pivots on a horizontal axis A that passes through the circumference
of the disc and is perpendicular to the plane of the disc, as shown in Fig. 5. The disc is
initially held so that the centre of mass G is at the same height as the pivot axis. The disc
is then released. Calculate the initial angular acceleration of the disc.

Fig. §

(5]

[5]
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8 (short) Figure 6 shows a planar mechanism consisting of a crank OA of length L,
a connecting rod AB of length v/3L and a sliding piston at B. The crank rotates at speed
o in an anti-clockwise direction. At the instant shown there is a right angle between the
crank and the connecting rod and the distance OB is 2L.

(a) For the instant shown calculate the angular velocity (magnitude and direction)
of the connecting rod by instantaneous centres or otherwise. ' [5]

(b) If there is a friction torque Q resisting rotation of joint A calculate the torque
required to rotate the crank. [5]

(TURN OVER
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9 (long) An aircraft flies along a path in a horizontal plane. At one instant the aircraft
is 1 km east of a radar station, and travelling north-east at 300 m s~1 as shown in Fig. 7.

The acceleration of the aircraft is 1 m s—2

in an easterly direction.
(a) Express the velocity and acceleration of the aircraft in intrinsic coordinates.  [6]

(b) Calculate the magnitude of the instantaneous radius of curvature of the path.  [5]

(c) Express the velocity and acceleration of the aircraft in polar coordinates, with
the origin at the radar station. (7]

(d) The radar points continually at the aircraft and measures the horizontal
distance to the aircraft. Calculate the acceleration rate at which this distance is changing
and calculate the angular acceleration (magnitude and direction) of the radar. [12]

North

3

East

Radar station

Fig. 7
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10 (short) Figure 8 shows a damper (damping rate A) and spring (stiffness k)
connected in series. One end of the spring is connected to ground and a force f(t) is
applied to the free end of the damper. Displacement x(¢) is defined in the figure.

(a) Show that force f(t) is related to displacement x(z) by

df k dx
S =
1= %
[5]
(b) Derive an expression for the force response to a unit step in dx/d¢. Sketch the
response. [5]

N

Fig. 8

(TURN OVER
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11  (short) Figure 9 shows a mass isolated from a moving base by a parallel spring and
damper. The absolute displacement of the base is x and the absolute displacement of the
mass is y.

(2) Show that the equation of motion is:

d2y . dy dx
ARy Pl = A=
mdt2 +ldt +ky % + kx

(3]

(b) The mass m is 10 kg and the stiffness & is 12 kN m~1. The base displacement
is sinusoidal with amplitude 1 mm, and can be at any frequency. Using the graphical data
in the mechanics data book, or otherwise, estimate the smallest value of damping A that
ensures the displacement amplitude of the mass is no greater than 2 mm. [7]

5]

y

Fig. 9
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12 (long) Figure 10 shows two masses, each of mass m, connected by a spring of
stiffness k. The lower mass is connected to ground by a second spring of stiffness k. The
displacements of the masses are y; and y;.

£
fT > K “yz

Fig. 10

¥

(a) Show that the equations of motion can be written as:

m 0 yl(t)}+ ko —k )’1(1‘)}={0 }
0 m || 520) —k 2k 2 (2) f@)

(5]
(b) By considering free vibration (f(t) = 0) and harmonic displacements
(01 () = €'Y, y5 (1) = Y¢/?"), show that the natural frequencies @y and @, satisfy:
(k- @?m) (26— w?m) — K2 =0
and find expressions for @; and @,. [10]
(¢) Show that the displacement response y;(¢) = Y5¢'®" to a harmonic force
excitation f (t) = Fe'® on the lower mass is given by:
n k—o?*m
F (k- 0?m)(2k — 02m) — k2
[10]
(d) Sketch the magnitude of Y5/F as a function of frequency ®. Also show on
your sketch the effect of adding a viscous dashpot between the two masses. (5]

END OF PAPER






