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Examiner’s comment. Most candidates could do the very standard part on cablc
tension, but lots did not realise that a typical pole had cables on both sides, so that the
net horizontal force on the pole was zero. Several omitted (he axial compression of
180 N in the pole, and some contrived (o have an upwards (tensile) force on the
typical pole. '

For the corner pole, it was surprising how few students, despite having sketched a
plan view, realised that the resultant horizontal force on the corner pole bisected the
angle between the two lines of poles. Many invented an x-y co-ordinate system with
x parallel to one line of cables, and went on to find component shear forces and

moments in this syslem — very laborious !~ Mean mark was about 60%.
R2 (log) T
<9 G o, H
/

('a)'A 3 /f | , ‘FLV
%YT I// JW - %T

Tole romesh abut A o F v whle shudive => veockn [z:(

&Mf-’.a&/ S&Q{{w II,_ eyﬂibﬁm ola“))m/f’ m Ll :
— Vel e ch— = +2 /3 (We L—?ju = }'&ﬁm)
— workeah okt £ ._Z_g_V,ZLg“]%C'L =>—EC=_"_-%V

— Yerolye Mzmhx% = —rG'H = = /TrW/3
Cmpde cab »/M‘ulh] loaugn BG « Ty = ,_,,g%_iw [r«;]

(b) [n) Vivho! wok  cmsd vij wil o) at C [slved above)
e ,p_wég £

BC +A +1/, +44/3
6  —ANZ —2R[3  +24)3
GH  —z28n  — 93 + %A /3
G +A/z +2/3 + A)3

thl $A = /&s,u(oaw of C

L [4]

ﬁi) Al nembes T &HF:P have Maﬂuﬁe& lﬁn/(? — 5«:\7’“?1 a

Y44 ﬁ?bdaf. So ﬁ,\e Aisn pSov /«?!'lcaw of D s .3L/4-L
b oF C = 15M /4 [4]




(o) )/”eﬂ?aa] [ - i(ixp[mazﬁ\evj\'ﬂﬂiaffmm ‘Be})‘e/ + fart a
H w‘:D,'ma b:s '{Sn\meh/«) HD Nremeins vevtical,

- Pﬁ ——
A No need h Avess ')to
Seale — wit °
35 et 90° augler
= @a/édwﬁ‘mj 13{1 |
fﬁjm/whz] N

[+]

mau:bo\ 2 : VtVtm) wayk |
0 ot Locel eglibriun cydem uit

& . 6 [ood ot D veectSad at’ O oud
\ | / J ‘ .
3l Ay L G' — wfing 4 mmgfn’ / s
| Wl give e requived
¢ S— L4 ' - Aelakve a&rrkame«f‘ S.DG- .
3 }g ]
§ SERTER] 1 10, §

= 3§

Examiner’s comment. Mean mark just below 60%. Some had difficulty finding reactions (!)

- and bar forces in part (a). Part (b) (i) on virtual work was usually done well — designed to be
straightforward — but part (b) (ii) was disappointing. Doing part (c) by a displacement
diagram, many candidates made an injudicious choice of starting point, using G rather than H
or D (better since bar HD does not rotate, by symmetry) — so there were few fully correct
solutions. Some tried a local equilibrium system and virtual work, and one gave exactly the
right system but went astray in the calculation. There was one heroic, and completely correct,
solution, applying unit loads downwards at D and upwards at G and solving for forces
throughout the structure! A distressing number of candidates thought that they needed to
work out the bar extensions due to the forces calculated in part (a) — though no section or
material properties had been given. ‘
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Exaniner’s comment. Simple and fundamental — but badly done, mean mark about 50%. Some
~ sketches and diagrams were terrible, suggesting the candidate had never seen such a thing before
— not symmetric, having substantial moment at the tips of the cantilevers, not curving in the right
sense, being made to have zero bending moment over the supports, the moment diagram not
‘having zero slope at the cantilever tip, etc etc Many wanted to determine the function M(z)
instead of just working out the moment at a couple of salient points using Free Body Diagrams —
a few did not even get the reactions right !  Given the problems over part (a), it was not
surprising that very few made an effective attack on part (b) about the ‘optimum’ b/L — but one
candidate went right through and solved the resulting quadratic equation (though not asked to).
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Examiner’s comment - A disaster - mean mark about 25 % ! Many students made an
injudicious choice of Data Book cases — e.g. trying to use (twice) the formulae (giving rotation
not deflection) for a couple at one end of a simply-supported beam, instead of considering a
couple on the end of a cantilever of length L/2. Those considering a cantilever, rooted either at
midspan or one support, often got some part of the loading wrong — omitting a tip shear force, or
not getting the beam midspan bending moment correct. Both parts of (a) can be done neatly,
together, by solving the differential equation for deflection as suggested — but those on this route
often omitted the end reaction wL/2 on the beam. The main problems were again in equzlzbrzum
— getting the force and moment system correct.

In part (b) one surprise,.in a linear-elastic small-deflection problem, was how many
sketched graphs were curved — instead of just consisting of two straight lines. Few realised,
despite the hint on boundary conditions for further loading, that the two halves of the beam are
now fixed-ended by symmetry, so the quoted formulae can be applied direct — and the reaction
" on the central stop goes up at half the rate of the total load on the beam. The requested ‘suitable
dimensionless measure of the applied load’ caused some students to reach for Buckingham’s
theorem — when it seems obvious, given the request to plot 8/L and available formulae for
deflection 8, that wL*/EI should be used.
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Examiner’s comment Best done question on the whole Section, mean about 67 %, with 31 full
marks. In transforming using the ratio of E’s, some candidates transformed the depth not the
width ! - and sirice the concrete is stiffer than the timber (E. = 2.5 Ey), transforming to timber
should widen the concrete flange, not make it narrower (as many did). Some had evidently
forgotten how to find the centroid of an area with only one axis of symmetry, adding a ghostly -
bottom flange to get round that problem — and there were frequent errors in applying the parallel
axis theorem to find I (some squared the area not the distance, some did not square anything).
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Examiner’s comment Reasonably well done — mean about 50% but only one full mark. This
was because nearly all those who correctly back-substituted, to show that the given v(x) satisfied
the differential equation, neglected to show that it also satisfied the boundary conditions on
displacement. )

Most students could do part (a) on equilibrium correctly, though some
contrived to have transverse end reactions despite the symmetry, or couples at the ends. The
biggest problem in part (b) was not getting the correct sign in the equation relating moment to
second derivative of deflection — which then led on to a differential equation with a minus sign,
with solution involving exponential or hyperbolic rather than trigonometric functions, and so
confusion. A surprise was the number of candidates who got hung up on initial curvature —
despite the facts (i) that v(x) was defined to be measured from the initial crooked position and
(ii) that the initial curvature was in any case zero. '

The final graph was only moderately done —many did not show limitless
deflection at the Euler load, and many began with v, = e (rather than zero) at zero load P, despite
the definition of v in the question.

mmwj ﬁEﬁ 20 F






Crib Paper 2 Materials 1A 2007

7 a)

Force
Ideal Max strain

Tvpical/Max

Distance

Equilibrium

b) Let the radius of curvature on the neutral axis be R. The stress varies linearly with
distance y from the neutral axis and reaches oy when y=0.5b. Hence c=a,y/0.5b.
The elastic energy/vol at any point is 0.50‘2/E=(0.5/E)(csy y/O.Sb)2 so the total elastic
energy/length is:Then the strain y from the neutral axis is e=y/R and if it just yields at
the surface Eb/2R=cy,
The energy per unit volume a distance y from the axis is 0.5 so the total

Nonath is 2 22y’cldy abo?
energy/length is 2a 6[ X E

0_2

The total energy/vol is —%=.
6F

In simple tension the stress can reach oy over the whole cross section so the stored
2

c
energy/vol is ﬁ which is three times greater.

However this can only be achieved by using very small displacements and large
forces which is inconvenient for practical purposes.

Torsion also has a lower energy density as the strain is lower at the centre. However
it is used in the form of coil springs which also can give large displacements.

c¢) Since a watch spring must be compact energy per unit volume is the first
requirement. Energy per unit weight is less important. From fig 3.3 in the data book
carbides and alumina are the best in this respect. However they are very brittle and
difficult to form as a coil spring, we really need a metal. CFRP is a possibility but is
likely to be more expensive and also difficult in small sizes. This leaves steels and
titanium alloys as the best, with the steels being cheaper and easier to fabricate as they
can be formed in a soft state and then hardened.

Other important properties are resistance to fracture, fatigue and creep.



Comments

An almost universal error was to put the practical elastic limit where the graph
became non-linear. The elastic limit is not determined by any of the parameters on
this graph, but by dislocation pinning. Many candidates did not use the properties
chart in the data book and of those who did, many moved the line in the wrong
direction. For the last part many candidates just put down every parameter they could
think of, relevant or not.

8) Plastic deformation occurs when the elastic limit of a material is exceeded and
irreversible movement of atomic layers takes place. The effect is that atomic layers
slide over each other in a shear deformation, so that the density remains constant.
However for this to occur at the observed stresses it must be mediated by the
movement of defects such as dislocations. This allows it to occur at a much lower
stress than the ideal value at which complete planes would slide over each other.
Dislocations are impeded by any other defects including other dislocations which
form jogs where they cross. As the deformation increases the number of dislocations
increases and it becomes more difficult for them to move. This causes ‘work
hardening’. Since it is caused by the shear of planes it makes no difference which
direction they move so that tensile and compressive stresses have the same effect.
Nominal stress strain curves differ because a tensile strain reduces the cross section so
increasing the true stress for a given load while compression increases the cross
section and reduces the true stress.

(b) Stress (iii) 0=212

(i) o=113

(ii) =0
0.02 007 Y Strain

M

At (iv) the total plastic strain is 2x.07=0.114

(c) Whatever the initial tensile strain at any point, an equal compressive strain must
be imposed to straighten the bar. The first stress will be ooV so the final stress will
be 6,\2¢. Hence all stresses will be a factor \2 greater and this is the extra strength
required i.e. about 40%. In addition it is difficult to straighten a bent bar as it tends to
rotate in your hands. A smaller effect is tht the ends are closer together so the moment
less



9) When two surfaces come in contact asperities deform plastically until the normal
force is borne by the sum of the local stresses. The effective area is given by
A=W/30y where oy is the yield stress of the softer material. The frictional force
comes from the shear stress of the oxide film 1y. Hence the frictional force
F=t,W/(30y). If the mean pressure is P=W/Apominal Where Apominat is the nominal area
of contact F= 1yPApomin/(30y) so for a given pressure the force is proportional to the
area. To minimise friction choose hard materials with a weak oxide layer, and
materials which do not react with, or dissolve in, each other.

10) To avoid fast fracture for a given working stress the maximum crack size must be
below a value determined by the fracture toughness. Since cracks grow with every
cycle, it is necessary to work back from this value to the largest allowable initial crack
size for a given number of cycles. A proof stress equal to the stress required to cause
fast fracture if a crack of this size is present is applied and if the structure survives it is
safe against fracture for the required number of cycles.

To avoid fatigue cracks sharp corners should be avoided. It is also desirable that the
structure should yield, or a pressure vessel leak, before fast fracture which is much
more dangerous. For high temperatures creep is the main problem, this is a function
of time and stress, not the number of cycles.

11)

i) Stiffness is determined by the elastic modulus. Young’s modulus is the most
common one. It can be measured by bending a beam, in a tensile test with a strain
gauge or from the velocity of sound. In metals it is not very temperature dependent.
ii) Hardness is determined by the yield stress. This is normally measured in a tensile
test. A hardness test, such as the Vickers, is not at all accurate and mainly used for
qualitative testing. In fcc metals the yield stress is not very temperature dependent
but in other metals it increases significantly at low temperatures.

iii) Brittleness is determined by fracture toughness. This is measured in a Charpy
impact test. Since a low yield stress leads to a large plastic zone and therefore a large
fracture toughness, other things being equal, the fracture toughness goes in the
opposite direction from the yield stress. Hard materials are usually brittle. Hence fcc
metals do not become brittle at low temperatures, others do.

12) For one year and one sq m mass gain=v(2x10°x3600x24x365)=0.79 kg -
Atomic wt of O is 16 and Fe 56 so 16 kg O added removes 56 kg Fe

0.79g added removes 2.78 kg Fe

Density of Fe= 7870 kg m™

Thickness loss =0.35mm

A M.Campbell






