Short Answers-Paper 3, PartIA, 2009

1(a) Textbook;
1(b) $R_{\text {in }}=2198 \Omega ; G=-9.01$
2(a) Textbook;
2(b)

$3 \overline{Z_{T}}=(8+j 2) \Omega ; \bar{I}=29.1 \angle-14^{0} A$
4(a) $R_{1}=63.3 \mathrm{k} \Omega ; R_{2}=10 k \Omega$
4(b)

4(c) Gain $=\frac{-g_{m} R_{1} r_{d}}{R_{1}+r_{d}}=48.1 ; R_{\text {out }}=\frac{R_{1} r_{d}}{R_{1}+r_{d}}=41.8 \mathrm{k} \Omega$
4(d) $\mathrm{C}_{1}=182.6 \mathrm{nF}$

5(a) Textbook
5(b) $\bar{I}=6.26 \angle-80^{\circ} A ; \cos \Phi=0.178 \mathrm{lag}$
5(c) Motor Power $=182.6 \mathrm{~W}$;Motor VARs $=1454 \mathrm{VARs}$;Cable power loss $=78.4 \mathrm{~W}$
5(d) $C=84.4 \mu F$

Section B Digital

6 (a) 2 bistables (c) If Q_{A} and Q_{B} are MSB and LSB respectively then $J_{A}=Q_{B} \quad K_{A}=\overline{Q_{B}}$
$I_{B}=\overline{Q_{A}} \quad K_{B}=Q_{A}$

7 (b) Sawtooth waveform of period 2811 clock cycles $=351.4 \mu \mathrm{~s}$.

8 (b) Output voltage $=0.8789 \mathrm{~V}$ (c) Output voltage $=2.49 \mathrm{~V}$

9 (a) (i) $Z=A \cdot C+B \cdot \bar{C}$ (ii) $\mathrm{Z}=1$ independent of C (iii) Static 1 hazard between $2 \mu \mathrm{~s}$ and $3 \mu \mathrm{~s}$
(iv) Remove hazard by adding term A.B term.
(b) $O_{0}=A_{0}, O_{1}=A_{1} \oplus A_{0}, O_{2}=A_{1} \cdot \overline{A_{0}}, O_{3}=A_{1}, A_{0}$ NAND gate implementation is
$O_{3}=\overline{\overline{A_{1}, A_{0}}} \quad O_{2}=\overline{A_{1} \cdot \overline{A_{0}}} \quad O_{1}=\overline{\overline{A_{1}} \cdot \overline{A_{0}} \cdot \overline{\overline{A_{1}} \cdot A_{0}}}$

Section C Electromagnetics

10 (c) $\mathrm{C}=0.163 \mathrm{nFm}^{-1}$

11 (c) $L=\frac{\mu_{0}}{\pi} \ln \frac{2 a-b}{b} \approx \frac{\mu_{0}}{\pi} \ln \frac{2 a}{b}$

12 (a) $R=2.45 \Omega$ (b) $L=0.11 H$ (c) $Z=(2.45+j 34.6) \Omega I=2.89 A$
(d) $\mathrm{B}=1.8 \mathrm{~T}$ gives $\mathrm{H}=500 \mathrm{Am}^{-1}$ and $\mathrm{I}=1.4 \mathrm{~A}, \mathrm{~B}=0.9 \mathrm{~T}$ gives $\mathrm{H}=25 \mathrm{Am}^{-1}$ and $\mathrm{I}=0.07 \mathrm{~A}$ so
input current is very 'peaky' owing to core saturation.

