
 

 

   

SECTION A 

 

1 (short)  

 

 (a) In the inverting op-amp circuit in Fig. 1, the op-amp may be assumed to be 

ideal. Derive an expression for the voltage gain in terms of R1 and R2.   
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(b) If instead the op-amp has finite input resistance, Ri , and finite gain A, but is 

otherwise ideal, derive an expression for the voltage gain in terms of A , Ri , R1 , R2.  
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Kirchhoff's current law at the inverting point: 
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We finally get: 
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 (c) With  Ri  = 10 kΩ, A = 10
3
, the op-amp of Fig. 1 is to be used to produce a 

voltage gain of −20. Using the expression for gain obtained in part (b) above, calculate 

R2 , if R1 = 100 Ω.    
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2 (short) 

 

 (a) In the circuit of Fig. 2, R = 200 Ω, L = 70 mH and C = 159 µF. By 

applying Thevenin’s theorem to this circuit, or otherwise, determine the rms magnitude 

of the current flowing in the capacitor C, its peak value and also its phase with respect 

to the 100 V voltage source.    
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 (b) The capacitor is now altered to give a resonant frequency of the circuit of 

50 Hz. Find the new value of capacitor C and determine the rms magnitude of the 

capacitor voltage, and its phase, with respect to the 100 V voltage source.   

 

Appling Norton’s Theorem: 
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At resonance load is purely real 

 

Thus: 
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3 (short)  

 (a) A 240 V, 50 Hz mains transformer is used to drive a load of (20+10j) Ω 

with 40 V rms. Assuming the transformer to be ideal, calculate the turns ratio of the 

windings and the impedance of the load when referred across to the high voltage 

(primary) side.      

 

N=Turns ratio=voltage ratio=240:40=6:1 

 

Impedance is transferred across x N
2
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 (b) Draw the equivalent circuit of a non-ideal power transformer and briefly 

explain the physical significance of each of the circuit elements.   

 
Rt represents series resistance of windings, i.e. copper loss 

 

Xt  represents the leakage flux across the transformer 

 

R0 represents hysteresis+eddy current losses in the transformer core, i.e. iron loss 

 

X0 represents inductance of windings on core (finite due to reluctance of flux path) 

Rt Xt 

N:1 

R0 X0 

Ideal 
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4 (long) Figure 3(a) shows the circuit diagram of a test probe, its cable and the 

input section of an oscilloscope. The oscilloscope input impedance is equivalent to a 

2 MΩ resistor in parallel with a 30 pF capacitor. The cable is represented by a 40 pF 

capacitance to the ground. 

 

 

 
 

                                                              Fig. 3(a) 

 

 (a) The probe may be set to either × 1 or × 10 attenuation by the operation of 

the switch shown. At low frequencies the effects of capacitance may be ignored. Hence 

calculate the value of R required to achieve the × 10 attenuation at low frequencies.   

 

Ignoring capacitors we get a potential divider: 
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Thus  R=18MΩ 

 

 (b) For the × 1 switch position, and now also considering the capacitors, 

derive an expression for the complex input impedance, seen at the input to the probe, as 

a function of frequency.    

 

In this case the circuit becomes: 

 

 
 

Considering that parallel capacitors add, we get: 

 

 
 

With R=2MΩ and C=70pF and ω=2πf 
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 (c) An engineer wishes to measure the voltage at a test point within a 

television which monitors the line frequency at 20 kHz. An equivalent circuit for the 

test point is given in Fig. 3(b). Determine the voltage measured with the probe set to × 1 

attenuation.      

 
Fig. 3(b) 

 

Thus: 

 

From  the expression of inZ derived above and f=20kHz we get: 
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5 (long)  

 (a) Briefly describe the electrical characteristics of an enhanced-mode field 

effect transistor.      

 

The lecture notes discuss the n-channel enhanced mode MOSFET: 
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 (b) Draw the small signal model for the source-follower circuit shown in  

Fig. 4 and derive expressions for the: 

 

  (i) input impedance; 

  (ii) gain when no load is connected; 

  (iii) output impedance. 

   

 

 

                                                 

 

 

 

 

 

 

 

 

Fig. 4 

Evaluate these parameters with gm = 3 mS and rd = 15 kΩ for the transistor, and with R1 

= 20 MΩ and R2 = 5 kΩ. 

 

The small signal model is: 
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 (c) If the circuit is used to drive an inductive load of 50 mH, calculate the 

frequency at which the current through the inductive load drops to 70% of its mid-band 

value.      
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70% of mid-bad frequency when the real part of the denominator equals its imaginary 

part:  
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Thus f=974Hz 















SECTION C 

 

10 (short)  

 

 (a) Using Gauss’s law, derive an expression for a parallel plate, air filled 

capacitor with plate separation d. State any assumptions made.  

 

 

  
 

 

Gauss’ law, flux of D= charge enclosed 

 

 

 
 

 

D is perpendicular to the plane due to the geometry. We assume infinite plane and 

ignore edge effects 

 

Calling σ [Cm
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] the charge density: 
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(b) Show that the electrostatic force on a capacitor plate is F = 0.5 QE, where 

Q is the total charge and E is the electric field.   

 

The force can be derived from the energy balance at equilibrium 
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11 (short) 

 

 (a) A straight wire carries a current of 2 A. Find the direction and strength of 

the magnetic flux density B at a distance of 30 mm perpendicular to the wire, showing 

your answer on a diagram.    

 

                  
 

 

From Maxwell-Ampere’s Law 

 

B2πr=µ0I 
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Then, for r=30mm and I=2A 
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 (b) A second wire is placed 80 mm away from and parallel to the first one and 

contains a current of 4 A in the opposite direction to the first wire. Calculate B at the 

mid-point between the two wires.    

 

                  
 

 

 

At mid point the B from each wire will add: 
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12 (long) Figure 6 shows a semi-circular permanent magnet of radius R, thickness 

δR (small) and depth d, which is constructed of COLUMAX. The magnet has a soft iron 

keeper, which is of very high permeability (µr ~10
4
), but which is prevented from 

touching the pole pieces by a plastic sheet (µr = 1) of thickness t.  The weight of the 

plastic and the keeper may be ignored. 

  
 

                                                                Fig. 6                                                                                    

 

 

 (a) If I = 0 A, R = 200 mm, δR = 10 mm, d = 20 mm, and t = 0.1 mm, what is 

the flux density, Bc , in the magnet?  (Use Fig. 2b, page 7, Electrical and Information 

Data Book)       

 

Circulation path length = πR    (we can ignore the keeper since it has very high µr 

 

From Maxwell-Ampere’s Law: 

 

Hdl NI=∫�  

 

Since I=0 

 

Hmlm+2Hpt=0 

 

Where m denotes the magnet and p the plastic  



 

The flux conservation at the magnet/plastic interface gives 
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Plotting this relation on the Columax graph in the data-book, it crosses the Columax line 

at Bm≈1.35T 

 

 (b) What force is necessary to pull the keeper from the magnet, with I = 0 A?   

 

Using the virtual work principle 
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 (c) If N = 10
5
 turns, what current I is necessary for the force between magnet 

and keeper to be zero?      

 



When the keeper is released Bm=0, BP=0, HP=0 

 

Then 
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From the Columax graph in the data-book, at Bm=0 we have Hm≈5.9x10
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Thus 

 

Irelease=0.37A 

 

(c) Does the direction of the current matter? What happens if I is increased 

beyond the value calculated in part (c)?    

 

Yes the direction of I matters, otherwise the B from the coil would be on the same 

direction as the B from the Columax. These would add and saturate the Columax. 

 

If I is in the correct direction to oppose the B from the Columax, then going above Irelease 

will turn the magnet in an electro-magnet and this will attract the keeper again.  

 

 

 

      

 

 

 


