YEAR 2010

l

PAPER NUMBER & TITLE P4 – Mathematical Methods NAME OF AUTHOR(S) Prof RS Cant

Cuto CutarA

$$\chi_{n+2} - 12\chi_{n+1} + 27\chi_n = 0$$

 $\begin{cases} \chi_0 = 0 \\ \chi_1 = 6 \end{cases}$

$$\begin{aligned} \text{ut} \quad x_n &= \lambda^n &: \quad \lambda^2 - 12\lambda + 27 = 0 \\ & (\lambda - q)(\lambda - 3) = 0 \\ \\ \text{>} u_n &= A \cdot q^n + B \cdot 3^n \qquad \text{gueral solution} \end{aligned}$$

$$ut \ O = A \cdot [+B \cdot] \implies A = -B$$

$$G = 9A + 3B \implies A = 1; B = -1$$

$$- x_n = q^n - 3^n$$

$$\frac{2}{x} = 0$$

$$\frac{2}{x} = \frac{2}{x} =$$

11 Hôpetril: linn <u>2cosx - 2cos2x</u> 2000 1-cosx

aguin: $\frac{1}{2}$ $\frac{-2\cos x}{\cos x}$

6

(b)
$$\lim_{\chi \to 0} \left(\frac{1}{\sin^2 x} - \frac{1}{2x^2} \right) = \lim_{\chi \to 0} \left(\frac{2x^2 - \sin^2 x}{2x^2 \sin^2 x} \right)$$

puver series : son $x = x - \frac{x^3}{3!} + \dots$ $s i x^2 x = x^2 - \frac{2x^4}{3!} + \dots$ $z^2 s i x^2 = x^4 - \frac{2x^6}{3!} + \dots$

$$\frac{1}{2x-30}\left(\frac{x^2-x^2+2x^4/3!+\dots}{x^4-2x^6/3!}\right) = \frac{2}{3!} = \frac{1}{3}$$

A2

3 Ergenvictors
$$\begin{pmatrix} 2 \\ 3 \end{pmatrix}$$
; $\begin{pmatrix} 3 \\ -2 \end{pmatrix}$
Eigenviewelies 1; 4

$$A = UAU^{-1}; \quad U = \begin{bmatrix} 2 & 3 \\ 3 & -2 \end{bmatrix}; \quad A = \begin{bmatrix} 1 & 0 \\ 0 & 4 \end{bmatrix}$$

$$U^{-1} = -\frac{1}{13} \begin{bmatrix} -2 & -3 \\ -3 & 2 \end{bmatrix} = \frac{1}{13} \begin{bmatrix} 2 & 3 \\ 3 & -2 \end{bmatrix}$$

$$A = \frac{1}{13} \begin{bmatrix} 2 & 3 \\ 3 & -2 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 4 \end{bmatrix} \begin{bmatrix} 2 & 3 \\ 3 & -2 \end{bmatrix} = \frac{1}{13} \begin{bmatrix} 2 & 12 \\ 3 & -8 \end{bmatrix} \begin{bmatrix} 2 & 3 \\ 3 & -8 \end{bmatrix} \begin{bmatrix} 2 & 3 \\ 3 & -2 \end{bmatrix}$$

is
$$A = \frac{1}{13} \begin{bmatrix} 40 & -18 \\ -18 & 25 \end{bmatrix}$$

4. (a)
$$2\frac{d^{2}x}{dt^{2}} + 5\frac{dx}{dt} + 2x = 2t + 9$$

with cutral cutaities $x = 3$ and $\frac{dx}{dt} = -1$ at $t = 0$
disadenstic eqn: $2\lambda^{2} + 5\lambda + 2 = 0$
 $\lambda = -2$ or $\lambda = -\frac{1}{2}$
complementary function is $x = Ae^{-2t} + Be^{-t/2}$
publication integral : thy $x = at + b$
 $\frac{dx}{dt} = a$; $\frac{d^{2}x}{dt^{2}} = 0$
 $\therefore 2.0 + 5a + 2(at + b) = 2t + 9$
 $\therefore a = 1$; $b = 2 \Rightarrow PT = x = t + 2$
General solution is $x = Ae^{-2t} + Be^{-t/2} + t + 2$
huthal conductions $3 = A + B + 2$ at $t = 0$
 $\therefore A = 1$; $B = 0$
 $x = e^{-2t} + t + 2$

A 3

(b) Minimum is set by
$$\frac{dx}{dt} = 0 = -2e^{-2t} \pm 1$$

 $\therefore e^{-2t} = \frac{1}{2} \Rightarrow t = \frac{1}{2}\ln 2$
 $\therefore x = e^{-2(\frac{1}{2}\ln 2)} \pm \frac{1}{2}\ln 2 + 2 = \frac{1}{2}(\frac{1}{2} \pm \ln 2)$
(c) $\frac{d^2y}{dx^2} - 4y = xe^x$; $y = 1 \text{ at } x = 0$
 $\frac{dy}{dx} = 2 \text{ at } x = 0$
CF: $\lambda^2 - 4 = 0 \Rightarrow \lambda = 2 \text{ or } \lambda = -2$
 $y = Ae^{2x} \pm Be^{-2x}$
PI by $y = (ax \pm b)e^x$
 $\frac{dy}{dx^2} = axe^x \pm ae^x \pm be^x$
 $\frac{d^2y}{dx^2} = axe^x \pm 2ae^x \pm be^x$
 $axe^x \pm 2ae^x \pm be^x - 4axe^x - 4be^x = xe^x$
 $xe^x : a - 4a = 1; a = -\frac{1}{3}$
 $e^x : 2a \pm b - 4b = 0; b = -\frac{2}{3}xe^x - \frac{2}{3}ye^x$

BCs:
$$y = 1 at x = 0$$
 : $1 = A + B - 2/q$

$$\frac{dy}{dx} = 2 at x = 0 : 2A - 2B - \frac{1}{3} - \frac{2}{9} = 2$$

$$A + B = \frac{11}{9} ; 2A - 2B = \frac{23}{9}$$

$$A = \frac{5}{4} ; B = -\frac{1}{36} = \frac{-1}{36} = \frac{-1}{3} = \frac{2}{79} = \frac$$

$$-2\left[x^{4} + x^{2}y^{2} - x^{2}ty + 4x^{2} + x^{2}y^{2} + x^{2}ty + 4x^{2} + 4x^{2}$$

$$2(x^{2}+y^{2}+t_{k}) -(a+2)^{2} = 2\left[(x^{2}+y^{2}+t_{k})^{2} - l(6y^{2})\right]^{l/2}$$

$$a = 0 : 2(x^{2}+y^{2}) + l_{k} = 2(x^{2}+y^{2}+2)$$

$$a = 2 : 2(x^{2}+y^{2}) - 8 = 2(x^{2}+y^{2}-4)$$

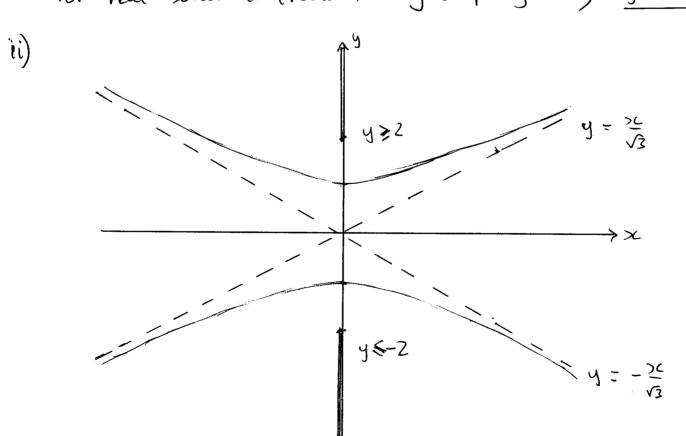
$$(1) a = 0 : (x^{2}+y^{2}+2)^{2} = (x^{2}+y^{2}+4)^{2} - l(6y^{2})$$

$$x^{4}+x^{2}g^{2}+2x^{2}+x^{2}g^{2}+y^{4}+2y^{2}+2x^{2}+2y^{2}+4$$

$$= x^{4}+x^{2}g^{2}+4x^{2}+x^{2}g^{2}+y^{4}+4y^{2}+4y^{$$

Return to original equation :
$$2 = iy (parely irreginal)$$

Thus $||i(g+2)| - i(H-2)| = 4$
 $i||(y+2)| - |(y-2)|| = 4$
 $(|(y+2)| - |(y-2)||^2 = 16$
 $(y+2)^2 - 2|(y+2)|(y-2)| + (y-2)^2 = 16$
 $y^2 + (xg) + 4 - 2|(y+2)|(y-2)| + y^2 - (xg) + 4 = 16$
 $2y^2 - 2\sqrt{y^2 - 4} + 8 = 16$
 $y^2 - \sqrt{y^2 - 4} = 4$
For real solutions (vecall that y is purely real) $y^2 \ge 4$



b)
$$||z+2i| - |z-2i|| = 4$$

 $||z-b|| = ||z+i||$; b real
 $||z-b||^2 = ||z-i||^2$
 $(x-b)^2 + y^2 = x^2 + (y+1)^2$
 $x^2 - 2bx + b^2 + y^2 = x^2 + y^2 + 2y + 1$
 $2y = (b^2 - 1) - 2bx$
 $y = -bx + \frac{1}{2}(b^2 - 1)$

48

From part (a) with a=2 have $|y| \ge 2$; >c=0 \therefore vrintruum value of b occurs for $2 = -b_x O + \frac{1}{2}(b^2 - 1)$ $\therefore b^2 = 5$ $\therefore b = \sqrt{5}$

Part 1A Paper 4 Mathematical Nethods 2010 Grib Sechin B 6. $g(t) = e^{-\alpha t}$; $t \ge 0$; y(t) = 0 at t = 0. Impulse response. a) stepresponse $\int g(t) dt = -\frac{1}{x} e^{-xt} + const = g(t)$ $y(0) = 0 \quad \therefore \quad const = 1_{\chi}$ $\therefore y(t) = \frac{1}{2}(1-e^{-\alpha t})$ b) input $x(t) = cos \omega t = \frac{1}{2} (e^{i\omega t} + e^{-i\omega t})$ $y(t) = \int_{0}^{t} e^{-x(t-t)} \cdot \frac{1}{2} (e^{i\omega Y} + e^{-i\omega T}) dY$ causetras $= \frac{e^{-\Delta t}}{2} \int_{0}^{t} \left(e^{(\omega + k)Y} + e^{(-i\omega + k)Y} \right) dY$ $= \frac{e^{-\kappa t}}{2} \left[\frac{1}{\omega + \kappa} e^{(\omega + \kappa)\gamma} + \frac{1}{(\omega + \kappa)\gamma} e^{(\omega + \kappa)\gamma} \right]^{\frac{1}{2}}$ $= \frac{e^{-\alpha t}}{2} \left[\frac{(\alpha - i\omega)(e^{-1}) + (\alpha + i\omega)(e^{-1})}{(\alpha - i\omega)(e^{-1})} \right]$

B

$$= \frac{e^{-\chi t}}{2(\chi^2 + \omega^2)} \left[\chi e^{\chi t} \frac{\omega t}{\omega t} - \frac{\omega t}{\omega t} \frac{\omega t}{\omega t} - \frac{\omega t}{\omega t} - \frac{\omega t}{\omega t} - \frac{\omega t}{\omega t} - \frac{\omega t}{\omega t} \right]$$

$$= \frac{e^{-\chi t}}{2(\chi^2 + \omega^2)} \left[\chi e^{\chi t} \left(e^{i\omega t} + e^{-i\omega t} \right) - tw e^{\chi t} \left(e^{i\omega t} - e^{-i\omega t} \right) - \frac{-2\chi}{2} \right]$$

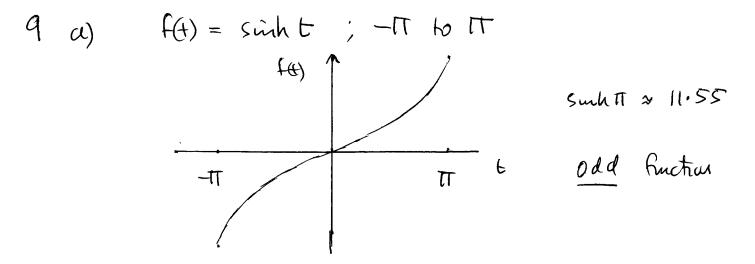
$$(\chi q(t) = \frac{\chi}{\chi^2 + \omega^2} \cos \omega t + \frac{\omega}{\chi^2 + \omega^2} \sin \omega t - \frac{\chi e^{-\chi t}}{\chi^2 + \omega^2}$$

B2

$$x^{2}-3y^{2}+2^{3} = 5$$
a) (it $f(x_{1}y_{1}z) = x^{2}-3y^{2}+2^{3}-5$
 $\nabla f = 2xy^{2}-6yy + 3z^{2}k$
divection $de = 2y + y - 3k$
 $(dt)^{2} = 4 + t + 9 = 14$
 $\therefore b = \frac{2y}{\sqrt{1k}} - \frac{3}{\sqrt{1k}}$ unit vector in
 $vequied divection$
 $\nabla f = \frac{1}{\sqrt{1k}} (12 - 12 - 36) = -\frac{36}{\sqrt{14}}$
b) $|\nabla f|^{2} = 4x^{2} + 36y^{2} + 9z^{4}$
At $(4, 1, -2)$ have $|\nabla f|^{2} = 64 + 36 + 164 = 244$

$$... | \nabla f | = \sqrt{244} = 2.61$$

$$\therefore \text{ wit normal vector is } \frac{\nabla f}{|\nabla f|} = \frac{1}{2Gi} \left(2x \underline{v} - Gy \underline{j} + 3z \underline{k} \right)$$
$$= \frac{1}{2Gi} \left(8 \underline{i} - 6 \underline{j} + 12 \underline{k} \right)$$
$$= \frac{1}{Gi} \left(4 \underline{v} - 3 \underline{j} + 6 \underline{k} \right)$$



b) Real series :
$$d = \frac{1}{2\pi} \int_{-\pi}^{\pi} \sinh t dt$$

 $T = 2\pi, \quad \omega = 2\pi = 1$
 $\overline{T} = 1$
 $z_{T} \left[\cosh t \right]_{-\pi}^{+} = 0$

$$OY \quad a_{n} = \frac{2}{2\pi} \int_{-\pi}^{\pi} \operatorname{Subt} \cos \frac{2\pi n t}{T} dt$$

$$= \frac{1}{\pi} \int_{-\pi}^{\pi} \operatorname{Subt} \operatorname{cosut} dt$$

$$= \frac{1}{\pi} \left[\operatorname{cosut} \operatorname{cosut} \right]_{-\pi}^{n} + \frac{\Lambda}{\pi} \int_{-\pi}^{\pi} \operatorname{dv} \frac{u}{\operatorname{Subt}} dt$$

$$= \frac{\Lambda}{\pi} \left[\operatorname{Subt} \operatorname{Sunt} \right]_{-\pi}^{n} - \frac{n^{2}}{\pi} \int_{-\pi}^{\pi} \operatorname{Subt} \operatorname{cosut} dt$$

$$: \left((+n^{2}) a_{n} \right) = \frac{\Lambda}{\pi} \left[\operatorname{Subt} \operatorname{Sunt} - \operatorname{Sub}(t) \operatorname{Su}(-n\pi) \right]$$

$$= O$$

$$b_{n} = \frac{1}{\Pi} \left[\prod_{n=1}^{T} \int_{-\Pi}^{T} \int_{-\Pi}^{T}$$

$$f(t) = \sum_{n=1}^{\infty} \left[\frac{-2n(-1)^n \sinh tt}{tt(1+n^2)} \right] \operatorname{son} nt$$

$$C_{n} = \frac{1}{2\pi} \int_{-\pi}^{\pi} \sin t e^{-int} dt \quad compley \ series$$

$$= \frac{1}{4\pi} \int_{-\pi}^{\pi} \left(e^{t} - e^{-t} \right) e^{-int} dt$$

$$= \frac{1}{4\pi} \int_{-\pi}^{\pi} \left[e^{t(1-in)} - e^{-t(1+in)} \right] dt$$

$$= \frac{1}{4\pi} \int_{-\pi}^{\pi} \left[e^{t(1-in)} + \frac{1}{1+in} e^{-t(1+in)} \right]_{-\pi}^{\pi}$$

$$= \frac{1}{4\pi} \int_{-\pi}^{\pi} \left[(1+in) \left(e^{\pi(1-in)} - e^{-\pi(1-in)} \right) + (1-in) \left(e^{-\pi(1-in)} - e^{\pi(1+in)} \right) \right]$$

$$= \frac{1}{4\pi(1+n^{2})} \int_{-\pi}^{\pi} (1+in) \left(e^{\pi} e^{-in\pi} - e^{\pi} e^{in\pi} \right) + (1-in) \left(e^{-\pi} e^{-in\pi} - e^{\pi} e^{in\pi} \right) \right]$$

$$= \frac{1}{4\pi(1+n^{2})} \int_{-\pi}^{\pi} \left[(1+in) \left(e^{\pi} e^{-in\pi} - e^{\pi} e^{in\pi} \right) + (1-in) \left(e^{-\pi} e^{-in\pi} - e^{\pi} e^{in\pi} \right) \right]$$

$$= \frac{1}{4\pi(1+n^{2})} \int_{-\pi}^{\pi} \left[e^{-in\pi} \left\{ (1+in) e^{\pi} + (1-in) e^{\pi} \right\} \right]$$

$$= \frac{1}{4\pi(1+n^{2})} \left[e^{-in\pi} \left\{ (1+in) e^{-\pi} + (1-in) e^{\pi} \right\} \right]$$

$$= \frac{1}{4\pi(1+n^{2})} \left[e^{-in\pi} \left\{ (2in+in) e^{-\pi} + (1-in) e^{\pi} \right\} \right]$$

$$= \frac{1}{4\pi(1+n^{2})} \left[e^{-in\pi} \left\{ (2in+in) e^{-\pi} + (1-in) e^{\pi} \right\} \right]$$

$$= \frac{1}{4\pi(1+n^{2})} \left[e^{-in\pi} \left\{ (2in+in) e^{-\pi} + (1-in) e^{\pi} \right\} \right]$$

$$= \frac{1}{4\pi(1+n^{2})} \left[e^{-in\pi} \left\{ (2in+in) e^{-\pi} + (1-in) e^{\pi} \right\} \right]$$

$$= \frac{1}{4\pi(1+n^{2})} \left[e^{-in\pi} \left\{ (2in+in) e^{-\pi} + (1-in) e^{\pi} \right\} \right]$$

B7

$$\therefore C_n = \frac{(-1)^n}{m(1+n^2)} \text{ in such TT}$$

$$f(t) = \sum_{n=-\infty}^{\infty} \left[\frac{(-1)^n}{n!} \operatorname{insuch} T \right] = \operatorname{int}_{n=-\infty}^{\infty} \left[\frac{(-1)^n}{n!} \operatorname{insuch} T \right] = \operatorname{int}_{n=-\infty}^{\infty} \left[\frac{(-1)^n}{n!} \operatorname{insuch} T \right]$$

d) Real coefficients :
$$a_n = 2Re(C_n) = 0$$

 $b_n = -2Im(C_n)$
 $= -2n(-1)^n \sinh \pi \pi \pi (1+n^2)$
 $\frac{u_s \ vequived}{1}$
when $n=0$ $C_n=0$ = d , as vecuved.

.

 $10a) \frac{d^2y_1}{dt^2} = y_1 + 3y_2; \frac{d^2y_2}{dt^2} = 4y_1 - 4e^{6}$ $y_1(0) = 2; \quad y_1(0) = 3; \quad y_2(0) = 1; \quad y_2(0) = 2$ $f''_{ij} = s^2 Y_i - s y_i(0) - y_i(0) = s^2 Y_i - 2s - 3$ $j \dot{y}_{1} = s^{2} t_{1} - s_{y_{1}}(0) - \dot{y}_{1}(0) = s^{2} t_{2} - s - 2$ equations are $S^2Y_1 - 2\zeta - 3 = Y_1 + 3Y_2$ $s^{2}y_{2} - s - 2 = 4y_{1} - \frac{4}{s-1}$ $(\varsigma^2 - 1) Y_1 - 3Y_2 = 2s + 3$ (0) $s^{2}Y_{2} - 4Y_{1} = s + 2 - \frac{4}{4}$ $= 5^{2} + 5 - 6$ - (2) $(0 \times 4 \quad 4(s^2-1)Y_1 - 12Y_2 = 4(2s+3)$ $(2 \times s^2 + (s^2 + 1)s^2 + 2 - 4(s^2 + 1)Y_1 = (s + 1)(s^2 + s - 6)$ $(5^4 - 5^2 - 12)Y_2 = 5^3 + 25^2 + 35 + 6$ Add $T_2 = \frac{5^2 + 25^2 + 35 + 6}{(5^2 - 4)(5^2 + 3)}$

 $ie Y_2 = \frac{A+Bs}{s^2-4} + \frac{C+Ds}{s^2+3}$

ßd

 $(A+B_{S})(s^{2}+3) + (c+D_{S})(s^{2}-4) = s^{3}+2s^{2}+3s+6$ $= As^{2}+3A + Bs^{3}+3Bs + Cs^{7}+Ds^{3}-4c - 4Ds$

 $s^{3}: B + D = 1$ $s^{2}: A + C = 2$ $s^{3}: B + D = 1$ 4B + 40 = 4 4A + 4C = 8 5: 3B - 4D = 3 7B = 7; B = 1; D = 07A = 14; A = 2; C = 0

$$\frac{1}{5^2} = \frac{5+2}{5^2-4}$$
 and 5^2+3 is a factor of

$$\frac{1}{5-2} = \frac{1}{5-2}$$

$$f_{1} = \frac{2s+3}{s^{2}-1} + \frac{3}{(s^{2}-1)(s-2)}$$
 from (1)

Now $\frac{3}{(s^2-1)(s-2)} = \frac{E+Fs}{s^2-1} + \frac{G}{s-2}$ $3 = (E+Fs)(s-2) + G(s^2-1)$ $= Es -2E + Fs^2 - 2Fs + Gs^2 - G$ $s^2: 0 = E+C \implies E = -G$ $s: 0 = E-2E \implies E+2C = 0$ $1: 3 = -2E-G \implies G+2E-3$ $\therefore G=1; E=-2; E=-1$

$$\begin{aligned} y_{1} &= \frac{2c+3}{s^{2}-1} - \frac{2+s}{s^{2}-1} + \frac{1}{s-z} \\ &= \frac{s+1}{s^{2}-1} + \frac{1}{s-z} = \frac{1}{s+1} + \frac{1}{s-z} \\ \vdots & y_{1}(t) &= e^{t} + e^{2t} \\ y_{2}(t) &= e^{2t} \end{aligned}$$

$$\begin{aligned} at t=0 \quad hwe \quad y_{1}(0) &= 1 + 1 = 2 \\ y_{2}(0) &= 1 \\ \vdots \\ y_{1}(t) &= e^{t} + 2e^{2t} \Rightarrow y_{1}(0) = 3 \\ y_{1}(t) &= 2e^{2t} \Rightarrow y_{2}(0) = 2 \\ \vdots \\ y_{1}(t) &= e^{t} + 4e^{2t} = e^{t} + e^{2t} + 3e^{2t} \\ \vdots \\ y_{2}(t) &= 4e^{t} + 4e^{2t} - 4e^{t} = 4e^{2t} \end{aligned}$$

b)

- BH

Crib Sechiar C

2 11) The program will return the output

The Function "Frenc" takes two string arguments. It searches the second string for the first occurrence of the first string. If it is found, the treation returns the location in the second string of the first elevent of the first string. If not, the function returns zero. A wild card character of "+" is allowed in the first string and will putch any character in the second string.

12) Algorithmic complexity describes how the number of operations scales with the size of the public.
For orcharge sort, the number of operations scales as n² where n is the number of eterns to sort. It has complexity O(n²). For Quecksort, the complexity is O(nlog₂n)

trolunge soit
$$f_e = ke ne^2$$

Quirdisoit $f_a = k_a n_a \log_2 n_a$
 $f_e = f_a$ when $n_e = 25\,000$ and $n_a = 10^6$
 $\therefore ke \cdot (2-5 \times 10^4)^2 = k_a \cdot 10^6 \log_2 10^6$
 $ke/k_a = \frac{10^6 \log_2 10^6}{(2-5 \times 10^4)^2} = \frac{10^6 \times 19.93}{6.25 \times 10^8} = 0.03189$

CZ

Nur te standen ken² skanlog₂n

$$\log_2 n \ge n \frac{ke}{kq}$$

n	log ₂ n	n ke Ka		
2	ł	0.06378		
8	3	0-2552		
16	4	05		
32	5	1.02		
64	6	2.04.096		
128	7	4-08192		
256	8	8.1638		
200	716446	6378		
250	7-966	79725		
249	7.461	794	\rightarrow	249 cterrs