SECTION A

1 (long)

An AC generator of RMS voltage V and internal impedance $Z_{1} \angle \theta$ is connected to a load of impedance $Z_{2} \angle \varphi$ as shown in Fig 1 .

Fig. 1
(a) Show that the average power dissipated in the load is given by:

$$
P=\frac{V^{2} Z_{2} \cos \varphi}{Z_{1}^{2}+Z_{2}^{2}+2 Z_{1} Z_{2} \cos (\theta-\varphi)}
$$

The current in the circuit is given by:

$$
I=\frac{V}{Z_{1}+Z_{2}}=\frac{V}{Z_{1} \cos \theta+j Z_{1} \sin \theta+Z_{2} \cos \varphi+j Z_{2} \sin \varphi}
$$

Hence $|I|=\frac{V}{\left[\left(Z_{1} \cos \theta+Z_{2} \cos \varphi\right)^{2}+\left(Z_{1} \sin \theta+Z_{2} \sin \varphi\right)^{2}\right]^{1 / 2}}$
The average Power $P=I^{2} R=I^{2} \operatorname{Re}\left(Z_{2}\right)=I^{2} Z_{2} \cos \varphi$
Hence $P=\frac{V^{2} Z_{2} \cos \varphi}{Z_{1}^{2}+Z_{2}^{2}+2 Z_{1} Z_{2}(\cos \theta \cos \varphi+\sin \theta \sin \varphi)}=\frac{V^{2} Z_{2} \cos \varphi}{Z_{1}^{2}+Z_{2}^{2}+2 Z_{1} Z_{2} \cos (\theta-\varphi)}$
(b) The phase φ of the load is held constant, and the magnitude Z_{2} of the load is varied. Show that the condition for maximum power to be transferred to the load is $\mathrm{Z}_{2}=\mathrm{Z}_{1}$.

To find the maximum power as a function of Z_{2}, we need to differentiate P with respect to Z_{2} and set equal to zero.

Thus
$\frac{d P}{d Z_{2}}=V^{2}\left\{\frac{\cos \varphi}{Z_{1}^{2}+Z_{2}^{2}+2 Z_{1} Z_{2} \cos (\theta-\varphi)}-\frac{Z_{2} \cos \varphi}{\left[Z_{1}^{2}+Z_{2}^{2}+2 Z_{1} Z_{2} \cos (\theta-\varphi)\right]^{2}}\left[2 Z_{2}+2 Z_{1} \cos (\theta-\varphi)\right]\right\}=0$
Hence $\left[Z_{1}^{2}+Z_{2}^{2}+2 Z_{1} Z_{2} \cos (\theta-\varphi)\right] \cos \varphi-Z_{2} \cos \varphi\left[2 Z_{2}+2 Z_{1} \cos (\theta-\varphi)\right]=0$
Thus: $\left(Z_{1}^{2}-Z_{2}^{2}\right) \cos \varphi=0$ giving $Z_{1}=Z_{2}$
(c) The magnitude of the load is kept constant, but the phase φ is varied. Show that the condition for maximum power to be transferred to the load is now:

$$
\sin \varphi=-\frac{2 Z_{1} Z_{2}}{Z_{1}^{2}+Z_{2}^{2}} \sin \theta
$$

Setting

$$
\left.\frac{d P}{d \varphi}\right|_{Z_{2}=\text { const }}=0
$$

Gives:

$$
-V^{2} Z_{2} \sin \varphi\left[Z_{1}^{2}+Z_{2}^{2}+2 Z_{1} Z_{2} \cos (\theta-\varphi)\right]-V^{2} Z_{2} \cos \varphi\left[2 Z_{1} Z_{2} \sin (\theta-\varphi)\right]=0
$$

Hence

$$
\sin \varphi\left[Z_{1}^{2}+Z_{2}^{2}\right]+2 Z_{1} Z_{2}[\sin \varphi \cos (\theta-\varphi)+\cos \varphi \sin (\theta-\varphi)]=0
$$

Remembering that: $\sin (A+B)=\sin A \cos B+\cos A \sin B$
We get:

$$
\sin \varphi \cos (\theta-\varphi)+\cos \varphi \sin (\theta-\varphi)=\sin [\varphi+(\theta-\varphi)]=\sin \theta
$$

Thus
$\sin \varphi=-\frac{2 Z_{1} Z_{2}}{Z_{1}^{2}+Z_{2}^{2}} \sin \theta$
(d) Using the results from (b) or (c), or otherwise, show that, if the magnitude and phase of the load are both varied, the condition for maximum power to be transferred to the load is:

$$
Z_{2} \angle \varphi=Z_{1} \angle-\theta
$$

From (b) $Z_{2}=Z_{1}$
$\Rightarrow P=\frac{V^{2} Z_{2}}{2 Z_{2}^{2}} \frac{\cos \varphi}{1+\cos (\theta-\varphi)}$
$\frac{d P}{d \varphi}=0$
$\Rightarrow-\sin \varphi[1+\cos (\theta-\varphi)]-\cos \varphi[\sin (\theta-\varphi)]=0$
$-\sin \varphi-[\sin \varphi \cos (\theta-\varphi)+\cos \varphi \sin (\theta-\varphi)]=0$
$-\sin \varphi-[\sin \theta]=0$
$-\sin \varphi=\sin \theta$
$\varphi=-\theta$
$Z_{2} \angle \varphi=Z_{1} \angle-\theta$
Alternatively
From (b) $Z_{2}=Z_{1}$
From (c) $\sin \varphi=-\frac{2 Z_{1} Z_{2}}{Z_{1}^{2}+Z_{2}^{2}} \sin \theta$
$\Rightarrow \sin \varphi=-\sin \theta$
$\Rightarrow Z_{2} \angle \varphi=Z_{1} \angle-\theta$

2 (long) A FET is configured in an amplifier as shown in Fig. 2. The impedances of $C_{\text {in }}, C_{\text {out }}$ and C_{s} are negligible at mid-band frequencies. The small signal parameters of the FET are $g_{m}=10 \mathrm{~mA} \mathrm{~V}$-1 and $r_{D}=25 \mathrm{k} \Omega$, and its operating point is given by $V_{d s}=15 \mathrm{~V}, V_{g s}=-2 \mathrm{~V}$ and $I_{d s}=1 \mathrm{~mA}$

Fig. 2
(a) At the given operating point, calculate the values for R_{2} and $V_{D D}$ given that $R_{3}=20 \mathrm{k} \Omega$ and $R_{1}=1 \mathrm{M} \Omega$.
$\mathrm{V}_{\mathrm{gs}}=-2 \mathrm{~V}$ must be the voltage across $\mathrm{R}_{2} \Rightarrow \mathrm{~V}_{\mathrm{gs}}=\mathrm{R}_{2} \mathrm{I}_{\mathrm{ds}}$
$\Rightarrow R_{2}=\frac{2 V}{10^{-3} \mathrm{~A}}=2 \mathrm{k} \Omega$
Voltage across $\mathrm{R}_{2}=2 \mathrm{~V}$
Voltage across FET $=15 \mathrm{~V}$
$\Rightarrow \mathrm{R}_{3} \mathrm{I}_{\mathrm{ds}}=20 \mathrm{k} \Omega .1 \mathrm{~mA}=20 \mathrm{~V}$

$$
\text { Therefore: } V_{D D}=37 \mathrm{~V}
$$

(b) For the circuit in Fig. 2, but without the load connected, draw the small signal equivalent circuit. Hence calculate its voltage gain, and also its input and output impedances, all at mid-band frequencies.

Capacitive impedances are negligible

$$
\begin{aligned}
& \text { Input impedance }=\mathrm{R}_{1}=1 \mathrm{M} \Omega \\
& \text { Ro }=\text { output impedance }=r_{d} \square R_{3} \\
& \frac{1}{R_{o}}=\frac{1}{r_{d}}+\frac{1}{R_{3}} \\
& R_{o}=\frac{r_{d} R_{3}}{r_{d}+R_{3}}=11.1 \mathrm{k} \Omega
\end{aligned}
$$

$$
\text { GAIN }=g_{m} \cdot R_{0}=-111.1
$$

(c) What value of external load resistance, $R_{L O A D}$, should be connected between the output terminal of the amplifier and ground in order to maximise the signal power in the load?

> For max power

$$
R_{L O A D}=R_{o}=11.1 \mathrm{k} \Omega
$$

(d) If the lower 3 dB cut-off frequency of the amplifier is 200 Hz and is dominated by the effect of $C_{\text {out }}$, calculate the value of this capacitor, assuming that $R_{L O A D}$ of part (c) is connected.

At the 3 dB point, the Thevenin equivalent of load circuits is:

3 (short) A small factory consumes 30 kW power at 230 V , with a lagging factor of 0.85 . The line supplying the factory has an impedance $0.1+\mathrm{j} 0.1 \Omega$. The frequency is 50 Hz
(a) Draw a circuit diagram for the above system. Calculate the power loss in the line, and the voltage at the supply end of the line.

$230 \times I \times \cos \phi=P$
$\Rightarrow I=\frac{30.10^{3}}{2300.85}=153.45 \mathrm{~A}$
$\frac{Q}{P}=\tan \phi$
$\Rightarrow Q_{L O A D}=P_{L O A D} \tan \phi=P_{L O A D} \frac{\sqrt{1-\cos ^{2} \varphi}}{\cos \varphi}=18692$ VAR
$P_{\text {LINE }}=I^{2} R=153.45^{2} \times 0.1=2355 \mathrm{~W}$
$Q_{L I N E}=I^{2} X=153.55^{2} \times 0.1=2355 V A R$
Input $\mathrm{P}=30000+2355=32355 \mathrm{~W}$
Input $\mathrm{Q}=18592+2355=20957$ VAR
But: $(V A)^{2}=P^{2}+Q^{2}$
\Rightarrow Input VA=38544VA
Input $V=\frac{V A}{I}=251.2 \mathrm{~V}$
(b) What is the minimum power lost in the line if the power factor correction is applied to the factory, and the factory voltage remains 230 V ?

Min power in line when p.f. $=1$.
$\Rightarrow \cos \varphi=1$
$\mathrm{P}_{\text {Line }}=\mathrm{VI} \cos \varphi=\mathrm{VI}$
$\Rightarrow \mathrm{I}=\frac{30 \mathrm{~kW}}{230}=130.43 \mathrm{~A}$
Thus
$P_{\text {Line }}=I^{2} \times 0.1=1.701 \mathrm{~kW}$

4 (short)
(a) State what assumptions have to be made to be able to describe a transformer as ideal

1) Reluctance of the iron core $=0$
2) All flux in primary links the secondary
3) Winding resistances are Zero
4) No power losses in the iron core
(b) The characteristics of a non-ideal transformer are determined by performing tests with the low voltage secondary open and short circuited. These give

Open Circuit Test

$$
\mathrm{V}_{\text {PRIMARY }}=260 \mathrm{~V}, \mathrm{I}_{\text {PRIMARY }}=0.6 \mathrm{~A}, \mathrm{P}=50 \mathrm{~W}, \mathrm{~V}_{\text {SECONDARY }}=130 \mathrm{~V}
$$

Short Circuit Test

$$
\mathrm{V}_{\text {PRIMARY }}=50 \mathrm{~V}, \mathrm{I}_{\text {PRIMARY }}=6 \mathrm{~A}, \mathrm{P}=50 \mathrm{~W}
$$

Determine the values of the equivalent circuit parameters (referred to the primary side of the transformer)

$$
\begin{aligned}
& R_{o}=\frac{V^{2}}{P}=1352 \Omega \\
& X_{0}=\frac{V^{2}}{Q}=\frac{V^{2}}{\sqrt{(V I)^{2}-P^{2}}}=457.5 \Omega
\end{aligned}
$$

Turns Ratio=2

$$
\begin{aligned}
& \mathrm{R}_{t}=\frac{P}{I^{2}}=1.39 \Omega \\
& X_{t}=\frac{Q}{I^{2}}=\frac{\sqrt{(V I)^{2}-P^{2}}}{I^{2}}=8.21 \Omega
\end{aligned}
$$

5 (short)

(a) Explain what is meant by a Thevenin equivalent circuit. Draw the Thevenin equivalent circuit for the circuit shown in Fig. 3(a), and derive expressions for the Thevenin voltage and impedance.

Fig. 3(a)

Thevenin: Any linear circuit may be represented as:

$\mathrm{V}_{\text {Th }}=\mathrm{V}_{\text {Open Circuit }}$
$\mathrm{R}_{\text {Th }}=\mathrm{V}_{\text {Open Circuit }} / \mathrm{I}_{\text {Short Circuit }}$
Thus, the Thevenin equivalent for the circuit in Fig. 3(a) has the following parameters:
$V_{T h}=V_{O C}=\frac{R_{2}}{R_{1}+R_{2}} V$
$I_{S C}=\frac{V}{R_{1}}$
$R_{T h}=\frac{R_{1} R_{2}}{R_{1}+R_{2}}$
(b) In the circuit of Fig. 3(b), $\mathrm{R}=200 \Omega, \mathrm{~L}=40 \mathrm{mH}$ and $\mathrm{C}=160 \mu \mathrm{~F}$. By applying Thevenin's theorem, or otherwise, determine the RMS magnitude of the current flowing in the capacitor C , its peak value, and its phase with respect to the 150 V voltage source.

Fig. 3(b)
$\bar{Z}_{L}=j \omega L=j 12.6 \Omega$
$\bar{Z}_{C}=\frac{1}{j \omega C}=-j 19.9 \Omega$
Regarding \bar{Z}_{C} as load

$$
\begin{aligned}
& \bar{V}_{\text {Th }}=\frac{200}{200+j 12.6} \times 150 \mathrm{~V}=(149.41-j 9.41) \mathrm{V}=149.71 \angle-3.61 \mathrm{~V} \\
& \bar{Z}_{\text {Th }}=\frac{200 \times j 12.6}{200+j 12.6}=(0.79+j 12.55) \Omega=12.57 \angle 86.3 \Omega \\
& \bar{I}=\frac{149.71 \angle-3.61}{(0.79-j 7.35)}=20.26 \angle 80.25 \mathrm{~A} \\
& \hat{I}_{C}=\sqrt{2} I_{C_{\text {Rus }}}=28.65 \mathrm{~A}
\end{aligned}
$$

Sectwi B.
6

$$
F_{A B}=B \cdot \bar{C} \cdot \bar{D}+A \cdot D+A \cdot \bar{B} \cdot \bar{C} \cdot \frac{M}{D}+\bar{A} \cdot \bar{B} \cdot D
$$

$\bar{A} \cdot \bar{B} \cdot D$
Simplest sop $F=B \cdot \bar{C} \cdot \bar{D}+A \cdot D+\bar{B} \cdot D$
(b)

If $A=B=1$ and $C=0$, charging from $0 \rightarrow 1$ or $1 \rightarrow 0$
should not have an effect acworduy to the modem expression. However raves in the wort may mean that F temporwily, drops to 0 before returany to I

This is known as a static 1-hazard.
(c) Fix by adduce and extra tern to the sop expression

So

$$
\begin{aligned}
F=B \cdot \bar{C} \cdot \bar{D}+A \cdot D & +\bar{B} \cdot D \\
& +A \cdot B \cdot \bar{C}
\end{aligned}
$$

T(a) Sequence $00,11,10,01$

Note no inpuls (apwt from lock) suce sequeve gereator 4 sintes $\Rightarrow 2$ bistubles recded.

(b) Assugn $J K(A)$ to $M S B \quad \sigma B(B)$ to $L S B F_{\gamma}$

Current State	Next Srate	J_{A} Bishinhe	K_{A}	$J_{B} J_{B}$	K_{B}
00	11	1	x	1	\times
11	10	x	0	\times	1
10	01	x	1	1	x
01	00	0	x	x	1

(c)

$8(a)$
Coles, mould 127; pots 127 (decimal) nit w
1 mover 0×30; puts content of $w(127)$ in loci $0 x J 0$
1 subwt $0 \times 30, \omega$; subtracts contents of $\omega(127$) from contents of $\mathrm{O}_{x} 30$ (also 127) \Rightarrow ans $=0$ places ans is w, lemony 0×30 contents (127) untouched.
 andof 0×30; 0×30 for ans $=127$ ($0 \times 7 \mathrm{~F}$) answer ito ox decibel (by befoul)
(sure 1 btfsc $O x 30,2$; test bit 2 of $O x 30$ and sky is simp does nt upper) if bit 2 is dear (whichit is n't) \rightarrow so doesn't skep
2 jolo and;

$$
\left.\left(\begin{array}{c}
\text { would } \\
\text { bork be } \\
\text { l but not } \\
\text { used }
\end{array}\right) \text { nog; } \begin{array}{l}
\text { nopj; }
\end{array}\right\}
$$ goes to end label. no operhois - nor executed.

1 end sleep;
a) i) For sobwt $0 x^{30}, 0$, need to torn content of 3 into $-\omega$ (ie wives at bits σ add 1)

$$
\begin{array}{llllllllll}
\text { so } & \omega \\
\rightarrow & (-\omega) & 0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
\hline & 0 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}
$$

and ald $127+(1)+$| 011111 |
| :--- | :--- | :--- | :--- | :--- |
| 00000000 |

note cary into note curry from low nibble to high mable
So contents of $\omega=00$ (hex)

$$
\therefore 0 \times 30=7 F
$$

$c, x+2$ plugs all set $(=1)$
ii)

ω								
0×30	1	1	1	1	1	1	1	1
0	1	1	1	1	1	1	1	
bitwise ANO								
0	1	1	1	1	1	1	1	

\}after nosmuation contours of $\omega=F F$ (hex) ". "0x30 = 7F
Note no carries for (c) \& $C, D C,+2$ thing all hear $(=0)$
(b) Code rakes 9 clock cycles to execute (see ruble above). I dock cycle $=900 \mathrm{~ns}$
\Rightarrow Execute tire $=900 \mathrm{~ns}$.

9

(u) So for $x_{x_{1}, k_{0}}$ each output $z_{0}-z_{3}$
Z_{0}^{y}

z_{1}

$\frac{$| 0 | 1 | 1 | 0 |
| :--- | :--- | :--- | :--- |
| 0 | 1 | 1 | 0 |
| 1 | 0 | 0 | 1 |
| 1 | 0 | 0 | 1 |
| $Z_{1}=X_{0} \bar{Y}_{1}+\bar{X}_{0} Y_{1}$ | | | |}{\(\substack{

\hline}\)}

22

0	0	1	1
0	0	1	1
0	1	0	1
0	1	0	1

$$
z_{3}
$$

$$
z_{2}=x_{1} \bar{Y}_{1}+x_{1} \bar{X}_{0}+\bar{x}_{1} x_{0} Y_{1}
$$

$$
z_{3}=x_{1} x_{0} Y_{1}
$$

(b) Write down expression for $\bar{\Sigma}_{2}+$ use De Morgan

$$
\begin{aligned}
\bar{z}_{2} & =\bar{X}_{1} \bar{X}_{0}+\bar{X}_{1} \bar{Y}_{1}+X_{1} X_{0} Y_{1} \\
& =\overline{X_{1}+X_{0}}+\overline{X_{1}+Y_{1}}+\overline{\bar{X}_{1}+\bar{X}_{0}+\bar{Y}_{1}} \\
\bar{Z}_{2} & =\overline{\left(X_{1}+X_{0}\right)_{0}\left(X_{1}+Y_{1}\right) \cdot\left(\bar{X}_{1}+\bar{X}_{0}+\bar{Y}_{1}\right)} \\
z_{2} & =\left(X_{1}+x_{0}\right)_{0}\left(X_{1}+Y_{1}\right)_{0}\left(\bar{X}_{1}+\bar{X}_{0}+\bar{Y}_{1}\right)
\end{aligned}
$$

(c). For 20,2 ,

$$
\begin{aligned}
z_{0} & =y_{0} \quad \Rightarrow \quad z_{0}=\overline{\bar{y}}_{0} \\
z_{1} & =y_{0} \bar{y}_{1}+\bar{x}_{0} y_{1} \\
& =\overline{\overline{Y_{0} \bar{Y}_{1}} \cdot \overline{\bar{x}_{0} y_{1}}}
\end{aligned}
$$

(Demorgan)
for $\quad z_{2}, z_{3}$

$$
\begin{aligned}
\bar{z}_{2} & =\bar{x}_{1} \bar{x}_{0}+\bar{x}_{1} \bar{y}_{1}+x_{1} x_{0} y_{1} \\
& =\overline{x_{1}+x_{0}}+\overline{x_{1}+y_{1}}+\overline{\overline{x_{1}+\bar{x}_{0}}+\bar{y}_{1}} \\
z_{2} & =\overline{\overline{x_{1}+x_{0}}+\overline{x_{1}+y_{1}}+\overline{\overline{x_{1}+\bar{x}_{0}+\bar{y}_{1}}} \text { (Demorgm) }} \begin{array}{l}
\overline{z_{3}}
\end{array}=\overline{x_{1}}+\bar{x}_{0}+\bar{y}_{0} \\
z_{3} & =\overline{\bar{x}_{1}+\bar{x}_{0}+\overline{y_{0}}}
\end{aligned}
$$

Sechoi~ C
010 (a)

$$
F=\frac{1}{4 \pi \varepsilon_{0}} \frac{Q_{1} O_{2}}{r^{2}}
$$

Usoal defintons
(b)

Zero net force wher altrathue force due $\hbar+\operatorname{INC}\left(F_{1}\right)$ is the same maynitride as the force dooe to $+S_{1}-C\left(F_{C}\right)$

$$
\begin{aligned}
& 1 / 4 \pi \varepsilon_{0} \frac{1 \times 10^{6} \times 2 \times 10^{-6}}{x^{2}}=\frac{1}{4 \pi \varepsilon_{0}} \frac{5 \times 10^{6} \times 2.0 \times 10^{6}}{(0.1-x)^{2}} \\
& 5 x^{2}=(0.1-x)^{2} \\
& 5 x^{2}=0.01-0.2 x+x^{2} \\
& 4 x^{2}+0.2 x-0.01=0 \\
& x=\frac{-0.2 \pm \sqrt{0.2^{2}+4 \times 4 \times 0.01}}{8} \\
&=\frac{-0.2 \pm \sqrt{0.2}}{8}
\end{aligned}
$$

$11(n)$

$$
\begin{align*}
& \text { g gap length } \\
& \mathrm{hg}=0.1 \mathrm{~mm} \\
& \mathrm{~lm}_{\mathrm{m}}=100 \mathrm{~mm} \\
& \Omega \tag{1}\\
& \text { magnetic } \\
& \text { mureval legth }
\end{align*}
$$

B Flux conservation says $B m A=B g A$

$$
\Rightarrow B_{n}=B_{y}(\text { arsumaigi } 1 \text { pongin) }
$$

Ampere's Law $H_{m h i n}+\mathrm{HyLy}_{\mathrm{g}}=N I$ (2)

$$
\begin{equation*}
B_{y}=\mu_{0} H_{y}, B_{m}=\mu_{0} \mu_{m} M_{m} \tag{3}
\end{equation*}
$$

(1), (3) $\cdot(2) i$

$$
\frac{B_{m}}{\mu_{0}}\left(L_{y}+\frac{L_{m}}{\mu_{r}}\right)=N I
$$

(b)

Note from curves in duta book, $\mathrm{Si}: \mathrm{Fe}$ materal is well ito suturation so magrehic flox deristy is saturation value ie $\sim 1.3 T$

Q12 a) i)

$$
\rho(r)=\rho_{0}(1-4 r / 3 R)
$$

Amount of charge is spherical shell

$$
\begin{aligned}
& \delta Q=\rho(r) 4 \pi r^{2} \delta r \\
& =4 \pi \rho_{0}\left(1-\frac{2 n}{3 K_{2}}\right) r^{2} \delta r \\
& Q \quad Z_{\pi} \pi \int_{0}^{R}\left(1-\frac{2 b r}{36 R}\right) r^{2} \delta r \\
& =4 \pi \rho_{0} \int_{0}^{R}\left(r^{2}-\frac{2\left(\frac{2}{3} r^{3}\right.}{3 r^{2}}\right) \delta r \\
& =4 \pi \rho_{0}\left[\frac{1}{3} r^{3}-\frac{r^{4}}{6 R}\right]_{0}^{2} \\
& =4 \pi \rho_{0}\left[\frac{1}{3}-\frac{1}{6}\right] R^{3} \\
& =\frac{2}{3} \pi \rho_{0} R^{3}
\end{aligned}
$$

ii) for $r>R$,

Gauss's low

$$
\oint_{s} D \cdot d s=Q \Rightarrow D 4 \pi r^{2}=\frac{2}{3} \pi \rho_{0} \mu^{3}
$$

$$
\begin{array}{ll}
\underline{D}=\frac{1}{6 / r^{2}} \rho_{0} R^{3} & D=\epsilon_{0} \varepsilon E \\
E=\frac{1}{6 \varepsilon_{0} \rho_{0}} R^{3} & \left(\varepsilon_{0}=1 \text { oo bide sphere }\right)
\end{array}
$$

for $r<R$, reed π calculate Q isth r from i)

$$
\begin{aligned}
Q(r) & =4 \pi \rho_{0} \int_{0}^{r}\left(1-\frac{4 r}{6 R}\right) r^{2} \delta r \\
& =4 \pi \rho_{0}\left[\frac{1}{3} r^{3}-\frac{\pi}{6} \frac{r^{4}}{R}\right] \\
& =4 \pi \rho_{0}\left[\frac{1}{3}-\frac{r}{6 R}\right] r^{3}
\end{aligned}
$$

$$
\begin{aligned}
\Rightarrow D_{4} \pi y^{6} & =4 \pi \rho_{0}\left[\frac{1}{3}-\frac{r}{6 R}\right] r^{6} \\
\underline{D} & =\rho_{0}\left[\frac{1}{3}-\frac{r}{6 R}\right] r \hat{\imath} \\
\underline{E} & =\frac{\rho_{0}}{\varepsilon_{0} \varepsilon_{r} L}\left[\frac{1}{3}-\frac{r}{6 R}\right] r \hat{\imath}
\end{aligned}
$$

(b) i) Let inner shell have charge $+Q+$ outer- Q By taws, between sheller
$E=\frac{Q}{4 \pi \varepsilon_{0} 0^{2}}$ and $\epsilon=0$ elsewhere

$$
\begin{aligned}
V_{a}-V_{b} & =\int_{C_{b}}^{r_{b}} \frac{Q}{4 \pi r_{0} r_{a}}-\frac{Q}{4 \pi \varepsilon_{0} r_{b}} \\
& =\frac{Q}{4 \pi \varepsilon_{0}}\left(\frac{1}{r_{a}}-\frac{1}{r_{b}}\right)
\end{aligned}
$$

$$
C=\frac{Q}{V_{n}-V_{n}}=\frac{4 \pi \varepsilon_{0}}{\left(\frac{1}{r_{n}}-\frac{1}{r_{n}}\right)}
$$

13) $r_{a}=1 \mathrm{~cm}, r_{b}=\operatorname{Sin}$

$$
\Rightarrow C=\frac{4 \pi \varepsilon_{0}}{\left(\frac{1}{0.01}-\frac{1}{0.05}\right)}=1.4 \rho F
$$

ii)

$$
\begin{aligned}
Q=C V & =1.4 \times 10^{-12} \times 220 V \\
& =0.31 n C
\end{aligned}
$$

